Refine Your Search


Search Results

Technical Paper

Assessment of a Three-Semester Mechanical Engineering Capstone Design Sequence Based on the SAE Collegiate Design Series

Mechanical engineering students at Lawrence Technological University complete a five-credit hour capstone project: either an SAE collegiate design series (CDS) vehicle or an industry-sponsored project (ISP). Students who select the SAE CDS option enroll in a three-semester, three-course sequence. Each team of seniors designs, builds, and competes with their vehicle at one of the SAE CDS events. Three years after implementing major changes to the course structure and content, the three-semester capstone design sequence is revisited. Finalized learning objectives are presented and the sequence is assessed with a mix of direct, indirect, and anecdotal assessment. Student performance, as measured directly with design reports, milestones, and project completion, is good. Of the five Lawrence Tech CDS teams, only one has failed to be ready for competition since the changes were implemented.
Technical Paper

Non-Destructive Evaluation for High-Pressure Composite Tubes using a Hybrid Approach

Recently, composite materials/structures are getting increasingly used in the automotive and aerospace industry. Defects issue is commonly associated with the use of composite materials/structures. Reliable Non-Destructive Evaluation (NDE) of composite structures is still challenging due to the existence of small size defects. In this research, a hybrid approach is used to accurately determine small size internal defects. In this hybrid approach, X-Ray Computed Tomography is used as a reference to accurately determine all defect locations, then a digital shearography method is used to conduct fast NDE for in-line testing. The critical shearographic NDE parameters such as shearing angle, shearing distance and loading amount are determined and optimized based on the X-ray CT scan result. From the comparison of X-ray CT scan results and digital shearography NDE results, the detection rate of digital shearography for defects with a size of larger than 1mm is from 91.91% to 97.30%.
Technical Paper

An Application of Digital Image Correlation (DIC) Method in Large-Scale I-Beams Bending Test

AASHTO I-Beam is a standard structural concrete part for bridge sections. The flexural performance of an AASHTO I-Beam is critical for bridge design. This paper presents an application of Digital Image Correlation (DIC) Method in full-scale AASHTO I-Beam flexural performance study. A full-scale AASHTO I-Beam pre-stressed with steel strands is tested by three-point bending method. The full-scale AASHTO I-Beam is first loaded from 0 kips to 100 kips and is then released from 100 kips to 0 kips. A dual-camera 3D Digital Image Correlation (DIC) system is used to measure the deflection and strain distribution during the testing. From the DIC results, the micro-crack generation progress during the loading progress can be observed clearly from the measured DIC strain map. To enable such a large-scale DIC measurement, the used DIC setup is optimized in terms of the optical imaging system and speckle pattern size.
Technical Paper

Experimental Investigation on the Influence of Pressure Wheel Design on Heat Dissipation for a Laser Robotic End of Arm Tooling

The initiative of this paper is focused on improving the heat dissipation from the pressure wheel of a laser welding assembly in order to achieve a longer period of use. The work examines the effects of different geometrical designs on the thermal performance of pressure wheel assembly during a period of cooling time. Three disc designs were manufactured for testing: Design 1 – a plain wheel, Design 2 – a pierced wheel, and Design 3 – a wheel with ventilating vanes. All of the wheels were made of carbon steel. The transient thermal reaction were compared. The experimental results indicate that the ventilated wheel cools down faster with the convection in the ventilated channels, while the solid plain wheel continues to possess higher temperatures. A comparison among the three different designs indicates that the Design 3 has the best cooling performance.
Technical Paper

A Dynamic GUI Platform for Bluetooth Automotive Application Voice Communication Package

In this paper, a reconfigurable object-oriented simulator is proposed to analyze the performance of Bluetooth Voice Communication Package (VCP) for telecom purposes like hands-free vehicular communication. It consists of a graphical user interface (GUI) for research or validation engineers to investigate system specific performance. For example, a research engineer can utilize this GUI to analyze a system performance using different noise reduction filtering techniques in vehicular hands-free applications. Also, a validation engineer can utilize this GUI to evaluate vehicular Bluetooth audio quality for different vehicles at different driving conditions (e.g. speeds, fan levels, etc.). The proposed Bluetooth VCP model consists of modules like Audio Equalization (EQ), Acoustic Echo Canceller (AEC), and Noise Suppression (NS). This dynamic GUI platform provides the scope to add and analyze new proposed filtering techniques.
Technical Paper

Industrial Base Sustainment through Risk Modeling with Model-Based Systems Engineering Applications

There is evidence to suggest that before military equipment ever experiences sustainment delays the equipment carries state patterns within its logistics and supply chain data history that could be leveraged for risk mitigation. Analysis of these patterns can also identify new research & development (R&D) and technology transition candidates that relate the seemingly disparate activities of R&D project management and Diminishing Manufacturing Sources and Material Shortages (DMSMS) management. Relating eligible R&D activities to the DMSMS risk identification phase helps stage potential sustainment risk mitigations ahead of time on the one hand, while creating additional demand and resources to mature prototypes on the other hand.
Technical Paper

Dynamic Decoupling of Driveline Dynamics from NVH Driveline Dynamometer: an Industry Sponsored Senior Design Project

The American Axle & Manufacturing Inc. driveline dynamometer provides immense value for experimental validation of product NVH performances. It has been intensively used to evaluate product design robustness in terms of build variations, mileage accumulation, and temperature sensitivity. The current driveline dynamometer input motor system has multiple torsional modes which create strong coupling with test part gear mesh dynamics. Mechanical Engineering seniors at Lawrence Technological University designed, fabricated, and validated a mechanism to decouple the driveline dynamics from the driveline dynamometer dynamics. The student-designed decoupler mechanism is presented with experimental validation of effectiveness in decoupling driveline dynamometer dynamics from the driveline under test.
Technical Paper

Fatigue Life Improvement through the “NOVA” Process

The experimental methods focused on utilizing the newly developed NOVA induction heating and hardening manufacturing process as an adapted method to produce high performance engine valve springs. A detailed testing plan was used to evaluate the expected and theorized possibility for fatigue life enhancement. An industry standard statistical analysis method and tools were employed to objectively substantiate the findings. Fatigue cycle testing using NOVA induction-hardened racing valve springs made of ultra-high tensile material were compared to data for springs with traditional heat treatment and those with standard processing. The results were displayed using Wöhler and modified Haigh fatigue life diagrams. The final analysis suggests that NOVA processed springs have a seemingly slight, yet significant benefit in fatigue life of 5 - 7% over springs processed through a competing method.
Technical Paper

Terrain Truck: Control of Wheel Rotational Velocities and Tire Slippages

The dynamics of an AWD vehicle is determined by the interactions between the vehicle's wheels and the tire contact surface. Understanding and controlling these interactions drives the vehicle mobility and energy efficiency. In this paper new issues related to tire slippage control are addressed. The paper analytically demonstrates that two tires on the same axle with the same rotational speeds can have different slippages when the normal reaction and inflation pressure vary due to motion conditions. Hence, a new method is proposed to control the rotational velocity of the wheels in a way that provides the same slippages of the tires by accounting for changes in the normal load and tire inflation pressure. This approach is especially beneficial for vehicles with individual (electric) wheel drives which can be individually controlled by introducing the proposed algorithm for controlling both the vehicle linear velocity and the tire slippages.
Technical Paper

Innovative Graduate Program in Mechatronics Engineering to Meet the Needs of the Automotive Industry

A new inter-disciplinary degree program has been developed at Lawrence Technological University: the Master of Science in Mechatronic Systems Engineering Degree (MS/MSE). It is one of a few MS-programs in mechatronics in the U.S.A. today. This inter-disciplinary program reflects the main areas of ground vehicle mechatronic systems and robotics. This paper presents areas of scientific and technological principles which the Mechanical Engineering, Electrical and Computer Engineering, and Math and Computer Science Departments bring to Mechatronic Systems Engineering and the new degree program. New foundations that make the basis for the program are discussed. One of the biggest challenges was developing foundations for mechanical engineering in mechatronic systems design and teaching them to engineers who have different professional backgrounds. The authors first developed new approaches and principles to designing mechanical subsystems as components of mechatronic systems.
Technical Paper

Simulation and Approximation are Effective Tools for Products Development

To stay competitive, new products require faster development time at low cost and good quality. Defense as well as commercial industries are forced to use analytical tools to stay competitive in a tough market. The use of simulation tools and approximation techniques in evaluating product performance during the early stages of the product development has a major impart on the product development efficiency, effectiveness, and lead time. Building physical prototypes of complex systems is expensive and it is difficult and time consuming to develop them. It is extremely beneficial to know as much as possible about the product performance and to optimize its dynamic characteristics before the first physical prototype is built.
Journal Article

Analyzing Field Failures of Engine Valve Springs in Presence of Non Metallic Inclusions by Applying Statistical and Fracture Mechanics Models

The reliability of engine valve springs is a very important issue from the point of view of warranty. This paper presents a combined experimental and statistical analysis for predicting the fatigue limit of high tensile engine valve spring material in the presence of non-metallic inclusions. Experimentally, Fatigue tests will be performed on valve springs of high strength material at different stress amplitudes. A model developed by Murakami and Endo, which is based on the fracture mechanics approach, Extreme value statistics (GUMBEL Distribution) and Weibull Distribution will be utilized for predicting the fatigue limit and the maximum inclusion size from field failures. The two approaches, experimental and theoretical, will assist in developing the S-N curve for high tensile valve spring material in the presence of non-metallic inclusions.
Technical Paper

All-Wheel Driveline Mechatronic Systems: Principles of Wheel Power Management

All-wheel driveline systems with electronic torque control on each and all wheels, torque vectoring and torque management devices, hybrid electro-mechanical systems, and individual electro (hydraulic) motors in the wheels have been gaining a bigger interest in the industry for recent years. The majority of automotive applications are in vehicle stability control that is performed by controlling the vehicle yaw moment. Some devices also improve vehicle traction performance. The proposed paper develops a methodology that includes the key-principles in all-wheel driveline systems design and is based on the wheel power management as a broader analytical approach. The proposed principles relate to the optimization of power distributions to the drive wheels in both rectilinear and curvilinear vehicle motion. Inverse dynamics is the basis for the developed methodology.
Technical Paper

Tire Longitudinal Elasticity and Effective Rolling Radii: Experimental Method and Data

To evaluate traction and velocity performance and other operational properties of a vehicle requires data on some tire parameters including the effective rolling radius in the driven mode (no torque on a wheel), the effective radii in the drive mode (torque applied to the wheel), and also the tire longitudinal elasticity. When one evaluates vehicle performance, these parameters are extremely important for linking kinematic parameters (linear velocity and tire slip coefficient) with dynamic parameters (torque and traction net force) of a tired wheel. This paper presents an experimental method to determine the above tire parameters in laboratory facilities. The facilities include Lawrence Technological University's 4x4 vehicle dynamometer with individual control of each of the four wheels, Kistler RoaDyn® wheel force sensors that can measure three forces and three moments on a wheel, and a modern data acquisition system. The experimental data are also presented in the paper.
Technical Paper

All-Wheel Drive Vehicle Energy Efficiency Evaluation

All-wheel drive (AWD) vehicle performance considerably depends not only on total power amount needed for the vehicle motion in the given road/off-road conditions but also on the total power distribution among the drive wheels. In turn, this distribution is largely determined by the driveline system and its mechanisms installed in power dividing units. They are interwheel, interaxle reduction gears, and transfer cases. The paper presents analytical methods to evaluate the energy and, accordingly, fuel efficiency of vehicles with any arbitrary number of the drive wheels. The methods are based on vehicle power balance equations analysis and give formulas that functionally link the wheel circumferential forces with slip coefficients and other forces acting onto an AWD vehicle. The proposed methods take into consideration operational modes of vehicles that are tractive mode, load transportation, or a combination of both.
Technical Paper

The Study of a Cockpit with a Fixed Steering Wheel Position: Methods and Model

An ergonomics study was conducted in a mock-up with a fixed steering wheel position. Drivers adjusted the seat and pedals to a comfortable position. A three-dimensional coordinate measurement machine (CMM) was used to measure the comfortable position of 21 participants. Proven test methods were used to collect the posture data. A model is described to assist in seat and pedal placement for cockpit design.
Technical Paper

Effectively Approaching and Designing a Suspension with Active Damping

This paper discusses how to effectively design and set-up an ideal spring/damper combination in a low-mass open wheeled racecar to properly control vehicle handling and gain optimum performance of the system. The system that will be discussed is outfitted with a non-parallel, unequal length SLA suspension that was designed and raced at the 2001 Formula SAE competition. The focus of this paper will be more on how to choose an ideal suspension set-up for a low-mass open wheeled racecar, while considering the various variables that can affect the system as a whole. To properly design a suspension, a passive system will be used, and then the performance gains of a semi-active system will be introduced and discussed.
Technical Paper

Design of Formula SAE Suspension

Formula SAE is a Student project that involves a complete design and fabrication of an open wheel formula-style racecar. This paper will cover the suspension geometry and its components, which include the control arm, uprights, spindles, hubs, and pullrods. The 2002 Lawrence Technological Universities Formula SAE car will be used as an example throughout this paper.
Technical Paper

Design of Formula SAE Suspension Components

This paper is an introduction to the design of suspension components for a Formula SAE car. Formula SAE is a student competition where college students conceive, design, fabricate, and compete with a small formula-style open wheel racing car. The suspension components covered in this paper include control arms, uprights, spindles, hubs, pullrods, and rockers. Key parameters in the design of these suspension components are safety, durability and weight. The 2001 Lawrence Technological University Formula SAE car will be used as an example throughout this paper.
Technical Paper

The Impact of Aerodynamics on Vehicle Performance in a Formula SAE Racing Style Vehicle

Aerodynamic drag is the force that restricts the forward velocity of a vehicle. Sources of drag are form drag, interference drag, internal flow drag, surface friction, and induced drag. Aerodynamic drag directly impacts the fuel economy attainable by a vehicle. In the Formula SAE competition (FSAE), fuel economy is a factor during the endurance phase. This paper will focus on the effects of aerodynamic drag and how it impacts the fuel economy of a FSAE racing style vehicle. Using the Lawrence Technological University (LTU) 1999 and 2000 cars to study and evaluate various methods to reduce drag and optimize fuel economy. Theoretical and experimental methods will be used and the study will be limited to the effects of form and interference drag.