Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Management System Test Bench for Electric Vehicle Technology

2024-04-09
2024-01-2407
The importance of designing and sizing a thermal management system for electric vehicle powertrains cannot be overstated. Traditional approaches often rely on model-based system design using supplier reference component data, which can inadvertently lead to undisclosed errors arising from the interactions between the components and the environment. This paper introduces a novel test facility for battery electric vehicle thermal management technology, which has been designed for neural network virtual sensor and non-linear multi-in multi-out control development. The paper demonstrates how a digital twin of the test bench can used to support the development of such technology. Additionally, this paper presents preliminary results from the test bench revealing insights into the performance and interactions of key components. For instance, there is an observed 30% reduction in the maximum flow rate of the pump integrated into the test bench compared to the specified value.
Journal Article

Vortex Drag Revisited

2023-04-11
2023-01-0017
Some car shapes produce a substantial drag component from the generation of trailing vortices. This vortex (or lift dependent) drag is difficult to quantify for the whole vehicle, for reasons that are discussed. It has previously been shown that vortex drag may be assessed for some car features by consideration of the relationship between changes in drag and lift. In this paper this relationship is explored for some different vehicle shape characteristics, which produce positive and negative lift changes, and their combinations. Vortex drag factors are determined and vortex drag coefficients considered. An interference effect is identified between some of these features. For the simple bodies investigated the vortex drag contribution can be considerable.
Technical Paper

Evaluation of Optimal State of Charge Planning Using MPC

2022-03-29
2022-01-0742
Hybrid technologies enable the reduction of noxious tailpipe emissions and conformance with ever-decreasing allowable homologation limits. The complexity of the hybrid powertrain technology leads to an energy management problem with multiple energy sinks and sources comprising the system resulting in a high-dimensional time dependent problem for which many solutions have been proposed. Methods that rely on accurate predictions of potential vehicle operations are demonstrably more optimal when compared to rule-based methodology [1]. In this paper, a previously proposed energy management strategy based on an offline optimization using dynamic programming is investigated. This is then coupled with an online model predictive control strategy to follow the predetermined optimal battery state of charge trajectory prescribed by the dynamic program.
Journal Article

An Estimation of the Effect of Turbulence from the Natural Wind and Traffic on the Cycle-Averaged-Drag Coefficient

2022-03-29
2022-01-0896
A drag coefficient, which is representative of the drag of a car undergoing a particular drive cycle, known as the cycle-averaged-drag coefficient, has been previously developed. It was derived for different drive cycles using mean values for the natural wind. It assumed terrain dependent wind velocities based on the Weibull function, equi-probable wind direction and shear effects. It did not, however, include any effects of turbulence in the natural wind. Some recent research using active vanes in the wind tunnel to generate turbulence has suggested that the effect on drag can be evaluated from the quasi steady wind inputs. On this basis a simple quasi-steady theory for the effect of turbulence on car drag is developed and applied to predicting the cycle-averaged-drag coefficient for a range of cars of different types. The drag is always increased by the turbulence but in all cases is relatively small.
Technical Paper

Towards a Standardized Assessment of Automotive Aerodynamic CFD Prediction Capability - AutoCFD 2: Windsor Body Test Case Summary

2022-03-29
2022-01-0898
To improve the state of the art in automotive aerodynamic prediction using CFD, it is important to compare different CFD methods, software and modelling for standardized test cases. This paper reports on the 2nd Automotive CFD Prediction Workshop for the Windsor body squareback test case. The Windsor model has high quality experimental data available and a simple geometry that allows it to be simulated with limited computational resources. The model is 1 metre long and operates at a Reynolds number of 2.7 million. The original Windsor model did not include wheels, but a second variant was added here with non-rotating wheels. Experimental data is available for integrated forces, surface pressure and wake PIV surveys. Eight standard meshes were provided, covering the two geometry variants, two near wall mesh spacings (relating to wall resolved and wall modelled) and two mesh densities in the wake (relating to RANS and eddy resolving).
Journal Article

A Wind Tunnel Study of the Windsor Body with a Streamlined Tail

2021-04-06
2021-01-0954
The effects of adding a streamlined tail to a simple vehicle shape, represented by the Windsor Body has been investigated in a small scale wind tunnel experiment. The extended tail has a constant width, with a flat lower surface and a constant upper surface taper angle. The tail is truncated in steps to understand the trends in the principal aerodynamic characteristics. The slant surface and the base have been pressure tapped to indicate the contribution to drag and lift from these surfaces. The bodies have been tested over a range of yaw angles and wind tunnel airspeeds. The effects of adding wheels, albeit in a fixed ground experiment, has also been studied. The experimental data for the basic wheel-less body in a squareback configuration and with tapered tails of different length at zero yaw has been compared with an earlier CFD simulation of the same configurations.
Technical Paper

Parametric Study of Reduced Span Side Tapering on a Simplified Model with Wheels

2020-04-14
2020-01-0680
Many modern vehicles have blunt rear end geometries for design aesthetics and practicality; however, such vehicles are potentially high drag. The application of tapering; typically applied to an entire edge of the base of the geometry is widely reported as a means of reducing drag, but in many cases, this is not practical on real vehicles. In this study side tapers are applied to only part of the side edge of a simplified automotive geometry, to show the effects of practical implementations of tapers. The paper reports on a parametric study undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor model equipped with wheels. The aerodynamic effect of implementing partial side edge tapers is assessed from a full height taper to a 25% taper in both an upper and lower body configuration. These were investigated using force and moment coefficients, pressure measurements and planar particle image velocimetry (PIV).
Technical Paper

Streamlined Tails - The Effects of Truncation on Aerodynamic Drag

2020-04-14
2020-01-0673
Significant aerodynamic drag reduction is obtained on a bluff body by tapering the rear body. In the 1930’s it was found that a practical low drag car body could be achieved by cutting off the tail of a streamlined shape. The rear end of a car with a truncated tail is commonly referred to as a Kamm back. It has often been interpreted as implying that the drag of this type of body is almost the same as that for a fully streamlined shape. From a review of the limited research into truncated streamlined tails it is shown in this paper that, while true for some near axisymmetric bodies, it is not the case for many more car-like shapes. For these shapes the drag reduction from an elongated tail varies almost linearly with the reduction in cross section area. A CFD simulation to determine the drag reduction from a truncated streamlined tail of variable length on the simple Windsor Body is shown by way of confirmation.
Journal Article

Experimental Interpretation of Compression Ignition In-Cylinder Flow Structures

2020-04-14
2020-01-0791
Understanding and predicting in-cylinder flow structures that occur within compression-ignition engines is vital if further optimisation of combustion systems is to be achieved. To enable this prediction, fully validated computational models of the complex turbulent flow-fields generated during the intake and compression process are needed. However, generating, analysing and interpreting experimental data to achieve this validation remains a complex challenge due to the variability that occurs from cycle to cycle. The flow-velocity data gathered in this study, obtained from a single-cylinder CI engine with optical access using high-speed PIV, demonstrates that significantly different structures are generated over different cycles, resulting in the mean flow failing to adequately reflect the typical flow produced in-cylinder.
Journal Article

A Study on the Effect of Debris Location on a Double Element Wing in Ground Effect

2020-04-14
2020-01-0693
Multi-element front wings are essential in numerous motorsport series, such as Formula 1, for the generation of downforce and control of the onset flows to other surfaces and cooling systems. Rubber tyre debris from the soft compounds used in such series can become attached to the wing, reducing downforce, increasing drag and altering the wake characteristics of the wing. This work studies, through force balance and Particle Image Velocimetry (PIV) measurements, the effect a piece of debris has on an inverted double element wing in ground effect. The debris is modelled using a hard-setting putty and is located at different span and chord-wise positions around the wing. The sensitivity to location is studied and the effect on the wake analysed using PIV measurements. The largest effect on downforce was observed when the debris was located on the underside of the wing towards the endplates.
Technical Paper

Experimental and Computational Study of the Flow around a Stationary and Rotating Isolated Wheel and the Influence of a Moving Ground Plane

2019-04-02
2019-01-0647
This study investigates the aerodynamic behavior of the flow around a rotating and stationary 60% scale isolated wheel, with and without the use of a moving ground plane. The aim of this research was to improve the understanding of the fundamental aerodynamic flow features around a wheel and to examine how rotation and moving ground planes modify these and affect the production of drag. A bespoke rotating wheel rig was designed and wind tunnel tests were performed over a range of pre to post critical Reynolds numbers. Force coefficients were obtained using balance measurements and flow field data were obtained using Particle Image Velocimetry (PIV). The unsteady flow field data generated was used to validate unsteady CFD predictions. These were performed using STAR-CCM+ and a k-ω SST Improved Delayed Detached Eddy Simulation (IDDES) turbulence model. This was seen to outperform other models by capturing an increased amount of finer detailed, high frequency vortical structures.
Technical Paper

Experimental Design for Characterization of Force Transmissibility through Bearings in Electric Machines and Transmissions

2018-06-13
2018-01-1473
With the increasing stringent emissions legislation on ICEs, alongside requirements for enhanced fuel efficiency as key driving factors for many OEMs, there are many research activities supported by the automotive industry that focus on the development of hybrid and pure EVs. This change in direction from engine downsizing to the use of electric motors presents many new challenges concerning NVH performance, durability and component life. This paper presents the development of experimental methodology into the measurement of NVH characteristics in these new powertrains, thus characterizing the structure borne noise transmissibility through the shaft and the bearing to the housing. A feasibility study and design of a new system level test rig have been conducted to allow for sinusoidal radial loading of the shaft, which is synchronized with the shaft’s rotary frequency under high-speed transient conditions in order to evaluate the phenomena in the system.
Journal Article

An Objective Measure for Automotive Surface Contamination

2018-04-03
2018-01-0727
Surface contamination, or soiling, of the exterior of road vehicles can be unsightly, can reduce visibility and customer satisfaction, and, with the increasing application of surface-mounted sensors, can degrade the performance of advanced driver-assistance systems. Experimental methods of evaluating surface contamination are increasingly used in the product development process, but the results are generally subjective. The use of computational methods for predicting contamination makes objective measures possible, but comparable data from experiment is an important validation requirement. This article describes the development of an objective measure of surface contamination arising during experiments. A series of controlled experiments using ultraviolet (UV) dye-doped water are conducted to develop a robust methodology. This process is then applied to a simplified contamination test.
Journal Article

A Drag Coefficient for Test Cycle Application

2018-04-03
2018-01-0742
The drag coefficient at zero yaw angle is the single parameter usually used to define the aerodynamic drag characteristics of a passenger car. However, this is usually the minimum drag condition and will, for example, lead to an underestimate of the effect of aerodynamic drag on fuel consumption because the important influence of the natural wind has been excluded. An alternative measure of aerodynamic drag should take into account the effect of nonzero yaw angles and a variant of wind-averaged drag is suggested as the best option. A wind-averaged drag coefficient (CDW) is usually derived for a particular vehicle speed using a representative wind speed distribution. In the particular case where the road speed distribution is specified, as for a drive cycle to determine fuel economy, a relevant drag coefficient can be derived by using a weighted road speed.
Technical Paper

A Computational and Experimental Investigation into the Effects of Debris on an Inverted Double Wing in Ground Effect

2018-04-03
2018-01-0726
Cars in several motor sports series, such as Formula 1, make use of multi-element front wings to provide downforce. These wings also provide onset flows to other surfaces that generate downforce. These elements are highly loaded to maximise their performance and are generally operating close to stall. Rubber debris, often known as marbles, created from the high slip experienced by the soft compound tyres can become lodged in the multiple elements of a front wing. This will lead to a reduction in the effectiveness of the wing over the course of a race. This work will study the effect of such debris, both experimentally and numerically, on an inverted double element wing in ground effect at representative Reynolds numbers. The wing was mounted at two different ride heights above a fixed false-floor in the Loughborough University wind tunnel and the effect of debris blockage modelled by closing sections of the gap between elements with tape.
Technical Paper

Towards Optimal Performance of a Thermoelectric Generator for Exhaust Waste Heat Recovery from an Automotive Engine

2018-04-03
2018-01-0050
Thermoelectric generator has very quickly become a hot research topic in the last five years because its broad application area and very attractive features such as no moving parts, low maintenance, variety of thermoelectric materials that total together cover a wide temperature range. The biggest disadvantage of the thermoelectric generator is its low conversion efficiency. So that when design and manufacture a thermoelectric generator for exhaust waste heat recovery from an automotive engine, the benefit of fuel consumption from applying a thermoelectric generator would be very sensitive to the weight, the dimensions, the cost and the practical conversion efficiency. Additionally, the exhaust gas conditions vary with the change of engine operating point. This creates a big challenge for the design of the hot side heat exchanger in terms of optimizing the electrical output of the thermoelectric generator during an engine transient cycle.
Technical Paper

Parametric Study of Asymmetric Side Tapering in Constant Cross Wind Conditions

2018-04-03
2018-01-0718
Sports Utility Vehicles (SUVs) often have blunt rear end geometries for design and practicality, which is not typically aerodynamic. Drag can be reduced with a number of passive and active methods, which are generally prioritised at zero yaw, which is not entirely representative of the “on road” environment. As such, to combine a visually square geometry (at rest) with optimal drag reductions at non-zero yaw, an adaptive system that applies vertical side edge tapers independently is tested statically. A parametric study has been undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor Model. The aerodynamic effect of implementing asymmetric side tapering has been assessed for a range of yaw angles (0°, ±2.5°, ±5° and ±10°) on the force and moment coefficients.
Technical Paper

Tribodynamics of a New De-Clutch Mechanism Aimed for Engine Downsizing in Off-Road Heavy-Duty Vehicles

2017-06-05
2017-01-1835
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. The flywheel is introducing the same speed and torque as the engine (represents the engine input to the clutch).
Journal Article

The Effect of a Sheared Crosswind Flow on Car Aerodynamics

2017-03-28
2017-01-1536
In the wind tunnel the effect of a wind input on the aerodynamic characteristics of any road vehicle is simulated by yawing the vehicle. This represents a wind input where the wind velocity is constant with height above the ground. In reality the natural wind is a boundary layer flow and is sheared so that the wind velocity will vary with height. A CFD simulation has been conducted to compare the aerodynamic characteristics of a DrivAer model, in fastback and squareback form, subject to a crosswind flow, with and without shear. The yaw simulation has been carried out at a yaw angle of 10° and with one shear flow exponent. It is shown that the car experiences almost identical forces and moments in the two cases when the mass flow in the crosswind over the height of the car is similar. Load distributions are presented for the two cases. The implications for wind averaged drag are discussed.
Journal Article

Coupled Level-Set Volume of Fluid Simulations of Water Flowing Over a Simplified Drainage Channel With and Without Air Coflow

2017-03-28
2017-01-1552
The motivation for this paper is to predict the flow of water over exterior surfaces of road vehicles. We present simulations of liquid flows on solid surfaces under the influence of gravity with and without the addition of aerodynamic forces on the liquid. This is done using an implementation of a Coupled Level Set Volume of Fluid method (CLSVOF) multiphase approach implemented in the open source OpenFOAM CFD code. This is a high fidelity interface-resolving method that solves for the velocity field in both phases without restrictions on the flow regime. In the current paper the suitability of the approach to Exterior Water Management (EWM) is demonstrated using the representative test cases of a continuous liquid rivulet flowing along an inclined surface with a channel located downstream perpendicular to the oncoming flow.
X