Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Simultaneous TOC Reduction and Biofouling Prevention in BWP Processed Water

This paper addresses the development of a novel technology to simultaneously reduce total organic carbon (TOC) and microbial count (MC) in biological water processor (BWP) processed water. This approach also creates a biocidal environment in BWP processed water before being fed into the reverse osmosis (RO) and post processing systems. The technology is based on an advanced oxidation process using an on-demand oxidizer generator, which does not require consumable chemicals. The SBIR (Small Business Innovation Research) Phase I feasibility studies successfully demonstrated the process efficacy in the reduction of both TOC and MC of the BWP effluent. Also, the residual disinfectant and reduced TOC in the treated effluent minimized fouling the RO membrane and water lines. In the Phase II project, a prototype is being fabricated and evaluated for its ability to reduce TOC and MC, and extend RO membrane life.
Technical Paper

Microfluidic Ion Chromatograph for In-Flight Water Quality Analysis

Although water quality may currently be analyzed on the ground after a flight, long-duration missions will require the capability to perform analyses on-board. If a water purifier fails, contaminants must be detected rapidly and corrective action taken in a timely manner to prevent serious harm to the crew. Many of the possible contaminants which could negatively affect astronaut health are inorganic ions. These ions can be quantified by ion chromatography (IC), although current commercially-available IC's are too large, heavy, and power-intensive to be used on a space mission. These units also require large quantities of caustic chemicals for analysis, which would pose a significant hazard in a microgravity environment. To meet the need for an inorganic water quality analysis device for long-duration missions, Lynntech developed an ion chromatograph tailored for future planned long-duration missions.
Technical Paper

Membrane-based Microfluidic Devices in the Design of a Space Compatible Carbon Analyzer

The development of a new microfluidics based carbon analyzer that is capable of generating chemicals needed in the analysis is described. The analyzer design is based on several components, an electrochemical cell, a membrane conductivity sensor, and an electrochemical water de-ionizer, which utilize porous membranes such as proton exchange membrane, gas separation membrane, and ion exchange membrane n their operation. These membrane-based microfluidic devices (MBMD) allow miniaturization of the carbon analyzer into a compact instrument which will provide high sensitivity and low power consumption. Each of the membrane-based microfluidic components was fabricated and their functioning tested over a broad range of inorganic or organic carbon content in water samples.