Refine Your Search

Topic

Author

Search Results

Technical Paper

Investigating the Factors Affecting Cabin Comfort for Agricultural Machinery

2024-01-16
2024-26-0067
Customer expectations for cabin tractors from comfort perspective has grown multifold in the recent years. Cabin noise and vibration is one of the crucial parameters which drives comfort feel for the customer. This would enable customer to remain comfortable during long working hours. Moreover, Cabin Tractors with lesser noise levels found to have better acceptance by Customers all over the world. The Nebraska reports studied for US based tractor shows evolution of trend of cabin noise in 80-100HP tractors in last couple of decades. Undoubtedly, tractor manufacturers have put lot of efforts towards meeting legislation demand & stringent customer requirements for European and US market. This paper presents the work carried out for investigating major contributing factors affecting tractor cabin Noise & Vibration for a Noisy cabin tractor.
Technical Paper

A Universal Steering Grommet Design Approach to Enhance the Passenger Cabin NVH Performance

2024-01-16
2024-26-0202
As a car OEM, we continuously strive to set the bar for competitors with every product. Consumer travel experiences are enhanced by increasing passenger cabin silence. There is only one steering system opening in the firewall panel, which is used for allowing intermediate shaft's fitment on the pinion shaft of the steering gear. The steering grommet is the sole component that covers the firewall cut-out without disrupting steering operations, which has a substantial impact on the NVH performance of the vehicle. It is typically used in cars to eliminate engine noise and dust entering to passenger compartment. The part is assembled inside the vehicle where the steering intermediate shaft passing through BIW firewall panel. We use a bearing, plastic bush, or direct rubber interference design in the steering grommet to accommodate the rotational input the driver provides to turn the automobile.
Technical Paper

Foam and FRP Sheets Packaging for Headliner Stiffness at Curtain Airbag Area

2024-01-16
2024-26-0008
As we all know, automotive headliners are an essential component of any car’s interior as they cover all the internal components and provide a clean and finished look. Headliners not only increase the aesthetic appeal of a car’s interior, but also acts as an insulation and sound absorption source. As per the latest Government norms, Curtain Airbag (henceforth called as CAB) has been made mandatory and this change calls for the corresponding changes in the Headliner packaging of all passenger vehicles. In general, curtain air-bag deployment calls for a twist open of Headliner at lateral sides (a portion below Hinge-line) during the deployment. This enables the inflated airbag to flow inside the passenger cabin to protect the passenger from any injury. Conventionally no components are packaged below the hinge-line area of headliner to avoid obstruction for CAB deployment and any part fly-off concerns.
Technical Paper

Integration of Seat-Belt Web-Guide Functionality in Trim Part

2024-01-16
2024-26-0018
Restraint systems in automotives are inevitable for the safety of passengers. Seat belts are one such restraint system in automotives that prevent drivers and passengers from being injured during a crash by restraining them back. Seatbelt on automotives has interface with Body-in-white (henceforth called as BIW) and Trim parts in-order to serve its purpose at vehicle level. One such interface part of seat belt is the web guide, which assists and ensures the nylon web’s smooth motion at different seat track positions. Web-guides on automotives ensure the flawless motion of seat belt web at pillar trim areas. In this paper, we are discussing alternate ways of assisting the seat belt web without the web-guide as a separate part. In-order to assist and ensure the motion of nylon web in its trajectory, we have extended the flange of the pillar trim involved.
Technical Paper

Investigation of Gasket Sealing Behavior of an All-Aluminum High Performance, New Generation Passenger Car Engine under Extreme Engine Operating Conditions

2024-01-16
2024-26-0033
The increasing demand for higher specific power, fuel economy, Operating Costs as well as meeting global emission norms have become the driving factors of today’s product development in the automotive market. Substitution of high-density materials and more precise adjustment of material parameters help in significant weight decrease, but it is accompanied by undesirable cost increase and manufacturing complexity. This becomes a challenge for every automotive engineer to balance the above parameters to make a highly competitive design. This work is a part of the Design and Development of 2.2 L, 4 Cylinder TCIC Diesel Engine for a whole new vehicle platform, concentrated on automotive passenger car operation. This paper explains the selection of a suitable cylinder head gasket technology for a lightweight engine that acts as a sealing interface between the cylinder block and cylinder head.
Technical Paper

Analysis and Reduction of Abnormal Suspension Noise in Sports Utility Vehicle

2024-01-16
2024-26-0217
This paper focuses on reducing abnormal noise originating from suspension when driving on rough road at the speed of 20 kmph. The test vehicle is a front wheel driven monocoque SUV powered by four cylinder engine. Cabin noise levels are higher between 100 to 800 Hz when driven on rough road at 20 kmph. Vibration levels are measured on front and rear suspension components, front and rear subframe, subframe connections on body to identify the noise source locations. Since the noise levels are dominant only in certain rough patches at very narrow band of time, wavelet analysis is used for identification of frequency at which the problem exist. Based on wavelet analysis, it is identified that the vibration levels are dominant on front lower control arm (LCA). The dynamic stiffness of LCA bushes is reduced by ~ 40% to improve the isolator performance which reduced the noise levels by ~ 9 dB (A) at the problematic frequency band.
Technical Paper

Optimization of Trim Clip Design for Performance Improvement

2024-01-16
2024-26-0367
As customers are inching towards adoption of electric vehicles as an alternative to internal combustion engines, automotive OEM’s will have to embrace this change and equip with new product development process. When it comes to Electric Vehicle (EV) in comparison with Internal Combustion Engine (ICE), NVH plays a major differentiator for vehicle refinement. Squeak and rattles will account for 20-25% of overall in-cabin noise source in an electric vehicle, most of which is observed from interior trims. Trims are mounted using small plastic clips which function as attachments and play a significant role in part retention and part integrity during normal operation and in case of any transient events. The engineering specifications for selecting a clip is force in newtons and it is mostly driven by ease of assembly, serviceability, and durability. A single DOF system with a specimen mass is developed and stiffness and damping are calculated based on transmissibility.
Technical Paper

Solving Whine Noise in Electric Vehicles: A Comprehensive Study Using Experimental and Multiphysics Techniques

2024-01-16
2024-26-0222
This paper examines one of the approaches used to identify the root causes of sound quality issues in vehicles, including the direct impact of psychoacoustics on the human experience. Specifically, the absence of masking effects provided by traditional combustion engines has made noise and vibration from electric drives significant factors in decision-making processes, with high-pitched tonal noise from electric motors causing annoyance and sound quality concerns for electrified propulsion systems. During vehicle testing at different speeds, a whining noise was observed, leading to an NVH test to locate the noise source. The noise is traced to the transmission by the dominating order of input reduction along with the contribution from the casing resonance. A multi-physics-based e-NVH analysis was performed, and the test data were correlated.
Technical Paper

Reduction in Synchronizer Ring Wear and Improving the Cone Torque Generation by Enhancing the Lapping Operation Using Statistical Technique

2023-11-10
2023-28-0116
In automotive manual transmission gearboxes, the synchronizer rings play a vital role in gear shift operations. The efficiency of the synchronizer ring depends upon the frictional surface geometry. The critical parameter is the synchronizer ring frictional surface circularity. The circularity deviation causes higher synchronizer ring wear and poor cone torque generation. With the current manufacturing methods and the thickness of the synchronizer ring, circularity improvement is a challenge. The synchronizer ring thread turned part is lapped to improve the circularity. Reduction in circularity can be improved by optimizing the lapping operation. In this work, an optimal lapping condition was developed using statistical methods. Taguchi DOE was used to analyze the different parameter combinations along with the noise parameter – different ranges of circularity variation in turning operation. This helps to find the best lapping parameter settings to improve the reduction in circularity.
Technical Paper

Effect of Temperature on Synchronizer Ring Performance

2023-11-10
2023-28-0054
The brass synchronizers are not resistant to abusive conditions of gearbox operations, but they are very durable and cheap when used on their favorable material property working limit. The main failure which can occur in the gearbox due to the synchronizer is crash noise. During gear shifting the gear crash will create high discomfort for the driver and must apply high force to change the gears. The main factors which contribute to the crash phenomenon are the insufficient coefficient of friction, high drag in the system, and high wear rate of the synchronizer rings before the intended design life of the synchronizer. The brass synchronizers were tested on the SSP-180, ZF synchronizer test rig to know the effect of the synchronizer performance parameters like the coefficient of friction, sleeve force, slipping time as well as durability parameters like wear rate when the operating temperature of the oil is changed.
Technical Paper

Synchronizer Spring Failure Due to Gear Shift Loads - Investigation and Design Recommendations

2023-11-10
2023-28-0051
In manual transmission, the vital function of synchronizer pack is to synchronize the speed of the target gear for smooth gear shifting. The synchronizer pack consists of various elements and each of these elements has specific function. These elements are baulk rings, shifter sleeve, hub, synchro key, synchro springs etc. The function of synchronizer can be affected due to failure of any one of these elements. This work focuses on the failure of synchronizer pack due to synchro spring failure. The function of synchronizer spring is to exert the required force, to index the synchronizer ring before the movement of shifter sleeve over synchronizer ring. During the shifting of shifter sleeve from one gear to another gear, the springs deflect in both shifting directions. This causes fatigue failure of synchronizer springs. The manufacturing variations, and part quality issues results in very early fatigue failure of synchronizer springs.
Technical Paper

Effect of Rolling Direction and Gauge Length on the Mechanical Properties of S460MC High Strength Low Alloy Steel

2023-05-25
2023-28-1329
Tensile Testing is one of the most used and highly reliable method of mechanical testing to evaluate the tensile properties of the material. However, there is a large scope for discussing the behavior of the metals based on the direction of rolling and the tensile specimen size used for testing. This paper discusses the variation observed in the tensile values along the direction of rolling and traverse to the direction of rolling for S460MC. It also evaluates the variation observed in the values based on the various gauge lengths (GL) commonly used in testing as per international standards (80mm, 50mm and 25mm GL). It is observed that perpendicular to the direction of rolling, the Yield and Tensile strength of the material increase marginally while the Elongation percentage (%E) decreases by a small margin irrespective of the gauge length taken into consideration.
Technical Paper

Effect of Varying Levels of Work Hardening and Bake Hardening on the Mechanical Properties of Dual Phase Steels

2023-05-25
2023-28-1331
In most cases, the properties of a metal are evaluated in their as rolled condition, prior to any work hardening or bake hardening. But in the Automotive World, these steels get work hardened during the forming process and bake hardened in the paint shop. The goal of this paper is to evaluate the variations in the performance of Dual Phase (DP) steels and understand the most optimized method of testing and property generation. This method can then be used to extrapolate to real automotive components. Dual Phase Steels or DP Steels contain a mixture of Ferrite & Martensite from which they derive their name. They are a part of the advanced high strength and ultra-high strength steels steel family according to World Auto Steels. The Ferrite phase, with its iron content contributes to the material displaying an increased level of ductility whilst, the martensitic phase provides the steel with increased mechanical strength.
Technical Paper

Engineering Failure Analysis Methodology & Influence of Spline Cutting Method in Torsional Life Improvement in Tractor Axle Application

2023-05-25
2023-28-1318
The Tractors are inevitable in the world due to its remarkable contribution majorly in farming process and other applications. the farming equipment needs to perform multiple applications to enhance the productivity and increased horsepower demands all-wheel drive (Refer fig. 1) or four-wheel drive option in the tractor. So, it is becoming a mandatory feature. The main objective of this study is, improving the torsional fatigue life in front axle spindle shaft by modifying the spline design and optimizing induction hardening heat treatment process in such a way that the other part of the system will have a minor or no design change. It helps us to reduce the part count variability, lower manufacturing cost and development time.
Technical Paper

Identification of Swing Gate Seal Chucking using Predictive Methodologies and Test Correlation

2023-04-11
2023-01-0169
For decades, customer complaints on Squeak & Rattle issues have come as a question of quality for the automotive industry. Squeak and rattle sounds are customer irritants due to their non-patterned and transient nature. Squeak is a friction induced noise that generally occurs because of rubbing of the two materials that are incompatible with each other. While rattle is a phenomenon that occurs due to the impact between the two parts having unintended gap. They are no more secondary noises and avoiding or elimination of these become significant for brand building and warranty cost reduction. Chucking is a form of squeak noise that occurs due to the interaction between uncoated seal to seal. In Swing gate, this phenomenon is seen when seal bulb inner layers are completely compressed. Swing gate have fore-aft modes that are excited due to dynamic responses from different road profiles.
Technical Paper

High-Fidelity CAE Simulation of 4-Cylinder 4-Stroke Hollow Assembled Camshaft under Multi Axial Load

2023-04-11
2023-01-0163
The major area in which the automotive manufacturers are working is to produce high-performance vehicles with lighter weight, higher fuel economy and lower emissions. In this regard, hollow camshafts are widely used in modern diesel and gasoline engines due to their inherent advantages of less rotational inertia, less friction, less weight and better design flexibility. However, the dynamic loads of chain system, valve train and fuel injection pump (if applicable) makes it challenging to design over-head hollow camshafts with the required factor of safety (FOS). In the present work, high-fidelity FE model of a hollow camshaft assembly is simulated to evaluate the structural performance for assembly loads, valve train operating loads, fuel injection pump loads and chain system loads. The investigation is carried out in a high power-density (70 kW/lit) 4-cylinder in-line diesel engine.
Technical Paper

Light Weight and High Strength Load Floor with Paper Honeycomb Technology

2023-04-11
2023-01-0076
In order to sustain in automobile industry, fuel economy and robustness are playing vital role in vehicle. Every gram of weight will have an impact on fuel economy, thus burning a hole in consumers pocket and contributing heavily to the carbon footprint. Composite material development plays important role in meeting the stringent self-imposed targets of the automotive manufacturers and light weighting is becoming a prime option for improving Fuel Economy. The main objective of this paper is to optimize the weight of the luggage lid floor and reduce its cost without compromising on the strength by changing the raw material and manufacturing process. This part is in trunk compartment of the vehicle. Main function of this part is to withstand the luggage load under various user loading patterns at varied temperature and while driving on different road conditions.
Technical Paper

The Influence of the Material Construction of Leatherette in Squeak Noise Control

2023-04-11
2023-01-0075
PVC (polyvinylchloride) synthetic leather or called leatherette is being widely used for automotive interior applications for seat cover, gear boot, gap hider, steering wheel and roof liner due to their leather like feel and texture, flexibility, sewability, affordability, and wide design freedom. However, the leatherette construction such as top coating, backing fabric and fabric weaving pattern plays a critical role in the finished leatherette performance for the specific application. This study provides the influence of different coating material and different backing fabric in squeak behavior of gear boot PVC leatherette. The squeak behavior was studied by stick slip test as per automotive engineering requirements, and the response of these coating and fabric surface was measured in the form of Risk Priority Number (RPN).
Technical Paper

Electric Mobility and Technical Textile Necessity

2023-04-11
2023-01-0874
E-mobility is creating more challenges and great opportunities for automotive textile industries to bring out new textiles for light weight, more aesthetic, better feel, sustainable and biomaterial to meet the customer perception. Textiles allows a more design freedom to in terms of construction, weaving and wrapping solutions. A hard rough plastic surface could be transferred into a more pleasant soft touch surface by a simple wrapping with textiles. The introduction of electric vehicle will convert the car as more silent as it replaces the engine by motor and battery mechanism. The more silent is the car, the more silent is the BSR behavior of the material. This work discloses of a polyester textile developed to meet automotive lightweight to strength requirements with its new nonwoven construction for seat insert and bolster application which demands for high breaking strength, abrasion resistance, stretch and set and soiling resistance.
Technical Paper

Light Weight Composite Structure Approach of Automotive Soft Top Construction

2023-04-11
2023-01-0876
In an off-road vehicle, Vehicle Structure plays a major role in passenger safety, Aesthetics, Durability, through a validated construction of canopy structure. This structure is to maintain the shape of the vehicle and to support various loads acting on the vehicle. In present market a safe, Durable, Robust, Waterproof, Noise less, Light weight and cost-effective off-road vehicle will always be a delight for any customer. However, the current conventional way of Soft top vehicle structure use metal brackets and formed sheet parts to create a structure to retain the canopy shape in place. These conventional structures are often heavier and would have many demerits such as heavy weight, Corrosion, Risk of canopy tear due to metallic structure edges and inappropriate draining, water management. Considering this we replaced the heavy metal brackets in to blow molded plastic parts.
X