Refine Your Search

Topic

Author

Search Results

Technical Paper

SMART HONKING

2019-11-21
2019-28-2463
Smart Honking Keywords-Safety, Connectivity, GPS M. Priyanka, Mahindra&Mahindra, India Sai Himaja Nadimpalli, Mahindra&Mahindra,India Keywords-Honking , Infotainment , GPS Research and/or Engineering Questions/Objective: In India unnecessary vehicular honking is the main reason for noise pollution. The problem is worst at traffic signals where drivers start honking without waiting for the signal to turn green or for traffic to move. Drivers show no respect to the law that prohibits the use of horn at traffic signals and other silent zones such as areas near hospitals, schools, religious places and residential areas. Vehicular honking in cities has reached at an alarming level and contributes approximately 70% of the noise pollution in our environment.The unwanted sound can affect human health and behavior, causing annoyance, depression, hypertension, stress, hearing loss, memory loss and panic attacks.
Technical Paper

Occupant Controlled Ventilation

2019-11-21
2019-28-2461
Keywords-Coolant,Ventilation Research and/or Engineering Questions/Objective: Number of Occupants is the major parameter when we consider Air Conditioning System. The number of person who stays in the room may vary in the same way the person who travels in the automobile also vary throughout the distance. This is more prevalent in transportation system like bus, train and where lot of people will travel together and where dropping station in the vehicle is too frequent.In this type,operating A.C has to be varied Methodology: . Instead the number count in the vehicle will be monitored from time to time. Based on the number of count, the cabin has to be cooled or heated and accordingly corresponding power has to be drawn by the compressor from the engine. This human count can be detected based on the number of CO2 sensor located in the cabin. the amount of fresh air that should be added to a cabin can be controlled by a carbon dioxide level transmitter.
Technical Paper

Systematic work flow for fatigue life prediction of Automotive components

2019-10-11
2019-28-0021
Fatigue life estimation of automotive components is a critical requirement for product design and development. Automotive companies are under tremendous pressure to launch new vehicles within short duration because of customer’s changing preferences. There is a necessity to have a comprehensive virtual simulation and robust validation process to evaluate durability of vehicle as per customer usage. Test track and field test, are two of the most time-consuming activities, so there is a need of simulation process to substitute these requirements. This paper summarizes the overall process of Accelerated Durability Test with measured road loads. Based on category of vehicle, type road profiles and the customer usage pattern, the wheel forces, strains and acceleration are measured which is used to derive the equivalent duty cycles on proving ground. The wheel force transducers (WFT) are used to derive loads for fatigue life estimation.
Technical Paper

Fuel efficiency improvement in automatic Transmissions by Lock-up clutch slip control methodology.

2019-10-11
2019-28-0029
Introduction :- Nowdays, Automatic transmissions (AT) have taken over more in the automotive market. Because of traffic, frequently clutch pedal pressing and shift lever operation becomes annoyance in manual transmission.Automatic Transmissions (AT) has better driving comfort, simple operation, but a lower transmission efficiency, higher fuel consumption, can't be competed with manual transmissions. Fuel economy of Automatic Transmissions is poor especially in city drive (Because of driving @ low engine speeds where Torque Converter(TC) is opened). Objective :- The objective of this paper is to present a methodology for torque converter clutches (TCC) to enable clutch slip control at low engine speeds in torque converter without adversely affecting noise and vibration (N&V) performance and increasing fuel economy. The effect of gear state, torque converter slip and power delivered to the driveline on fuel economy are to be discussed.
Technical Paper

Development of Methodology to Determine Toe Geometry of any Vehicle at its Early Design Stage for Optimum Tyre Life

2019-10-11
2019-28-0105
Toe setting, or the Vehicle geometry is one of the major wheel alignment parameters which directly effects handling of a vehicle. Correct toe setting ensures desired dynamic behavior of an automobile like straight line stability, cornering behavior, handling and tire durability. Incorrect setting of toe during design stage significantly deteriorates tire durability and leads to uneven tire wear. Within the current scenario in the Automotive Industry, the toe setting is majorly an iterative or a trial and error process which is both time consuming and involves higher development cost as there may be instances where 2 to 3 sets of iterations are needed before specification is finalized for production. Therefore, determining optimum toe setting at an early stage of a product development will not only save significant development time but it will also benefit in reducing product validation time and cost.
Technical Paper

Mathematical Modelling of Door Shut-line Definition in CATIA

2019-10-11
2019-28-0107
Door shut-line definition is the first vital step in car body door engineering and depends on the hinge position, hinge shape, manufacturing capabilities and other parameters. In the design process, once the hinge axis definition is finalized door shut-line is defined which should satisfy two major requirements. The requirements are clearance between the door outer surface with its surrounding components (like hinges, fender, other door etc.) and assembly feasibility. The above conditions must be checked on different locations of the door as well as w.r.t different openings of the door. The paper presents a mathematical model to determine the door shut-line position with great computational efficiency. This method propounds closure engineer with parameters to define the shut-line rather than cumbersome manual iterative process. Instead of following an iterative approach to determine a limit for the shut-line, paper presents a mathematical formulation with an implicit equation.
Technical Paper

Parametric Modelling and High Fidelity Algorithms for Vehicle Weight Estimation for Optimized Concept Vehicle Architecture

2019-10-11
2019-28-0036
PARAMETRIC MODELLING & HIGH FIDELITY ALGORITHMS FOR VEHICLE WEIGHT ESTIMATION FOR OPTIMIZED CONCEPT VEHICLE ARCHITECTURE The conceptualization phase of vehicle development focuses on the architecture definition and optimization based on different constraints/requirements. With the focus on Sustainability, the architecture optimization process must include "Light-weighting" as an optimization criterion. With only concept vehicle architecture available, the vehicle weight estimation becomes judgmental & inaccurate. This paper aims to address this deficiency with a new analytical approach for vehicle weight estimation. The new approach for vehicle weight estimation is a "bottom-up" approach using parametric models for each system weight with the inputs being the relevant vehicle specifications driving the system engineering. For size/shape-driven (rather than functional) systems, the models are content-based & segment-based.
Technical Paper

Design of Light weight spoiler for efficient aerodynamic performance of a vehicle

2019-10-11
2019-28-0003
The spoiler is an aesthetic as well as functional part fitted on the vehicles to increase the vehicle appeal and improve vehicle aerodynamics. The improvement of aerodynamics performance of the vehicle at higher speeds is achieved by reducing the overall vehicle coefficient of drag. This helps in better handling and improved fuel efficiency of the vehicle thus contributing to development of a greener vehicle. In this paper, the main focus is to reduce overall vehicle coefficient of drag, reduce the spoiler weight and improve the vehicle appeal thereby increase the customer appeal. Six-sigma design methodology (Define-Measure-Analyze-Design-Verify) and tools were used to arrive at the optimum solution for the stated objectives. QFD is used for converting the customer requirements into engineering parameters which define the final product. The QFD inputs are then used to define the critical to quality parameters (CTQ) for the spoiler.
Technical Paper

Aerodynamic Drag Reduction of a Intercity Bus through surface modifications- A Numerical Simulation

2019-10-11
2019-28-0045
The maximum power produced by the Engine is utilized in overcoming the Aerodynamic resistance while the remaining has been used to overcome rolling and climbing resistance. Increasing emission and performance demands paves way for advanced technologies to improve fuel efficiency. One such way of increasing the fuel efficiency is to reduce the aerodynamic drag of the vehicle. Buses emerged as the common choice of transport for people in India. By improving the aerodynamic drag of the Buses the diesel consumption of a vehicle can be reduced by nearly about 10% without any upgradation of the existing engine. Though 60 to 70 % of pressure loads act on the frontal surface area of the buses, the most common techniques of reducing the drag in buses includes streamlining of the surfaces, minimizing underbody losses, reduced frontal area, pressure difference between the front & rear area and minimizing of flow separation & wake regions.
Technical Paper

Understanding the Stick Slip Behavior of Plastics and Target Setting: An OEM Perspective

2019-06-05
2019-01-1465
Automotive OEMs are aggressively using different materials for interiors due to value proposition and variety of options available for customers in market. Excessive usage of different grade plastics with zero gap philosophy can cause stick slip effect leading to squeak noise. Even though systems and subsystems are designed using best practices of structural design and manufacturing tolerances, extreme environmental conditions can induce contacts leading to squeak noise. Appropriate selection of interface material pairs can minimize the possibilities of squeak conditions. Stick-slip behavior of different plastics is discussed in the present study, along with critical parameters during material compatibility testing in a tribological test stand. Friction coefficient of different material pairs for a defined normal load and sliding velocity are analyzed for patterns to recognize squeaks versus time.
Technical Paper

A Study on Door Clips and Their Influence on BSR Performance

2019-06-05
2019-01-1468
Squeak and rattle concerns account for approximately 10% of overall vehicle Things Gone Wrong (TGW) and are major quality concern for automotive OEM’s. Objectionable door noises are one of the top 10 IQS concerns under any OEM nameplate. Door trim significantly contributes to overall BSR quality perception. Door trim is mounted on door in white using small plastic clips with variable properties that can significantly influence BSR performance. In this paper, the performance of various door clips is evaluated through objective parameters like interface dynamic stiffness and system damping. The methodology involves a simple dynamic system for the evaluation of the performance of a clip design. Transmissibility is calculated from the dynamic response of a mass supported by clip. Parameters such as interface stiffness and system damping are extracted for each clip design. Variation of inner panel thickness is also considered when comparing clip performance.
Technical Paper

Study of Energy Absorbing Front Cabin Mount, Its Stiffness Balance with Chassis and Test Correlation in Frontal Impact of Commercial Vehicle Cabin

2019-04-02
2019-01-1034
During design and development of a cabin for any commercial vehicle, meeting the strength requirements of front impact as per Indian regulation (AIS-029) is a very critical milestone. AIS-029 regulation consists of three destructive tests, i.e. Front Impact Test (Test A), Roof Strength (Test B) and Rear Wall Strength (Test C). Study of energy absorbing front cabin mount, its stiffness balance with chassis and CAE correlation with physical test is demonstrated in this study. [1]
Technical Paper

Durability of Customer Perceived Quality of Molded-in-Color Car Bumper

2019-01-09
2019-26-0319
Customer perceived quality (CPQ) of the car is the impression of excellence that a customer experiences the brand through sight, sound, touch, and scent. Molded-in-color (MIC) bumper’s aesthetic appeal contributes significantly to the CPQ of the car. Typical parameters used to define CPQ are color, gloss, grain definition, grain depth, geometry and draft. In this work the durability of the color and gloss post ageing is understood by using analytical and characterization tools. Using the results of ageing characterization, an attempt has been made to understand the retained newness of MIC bumper.
Technical Paper

Optimization of EGR Mixer to Minimize Thermal Hot Spot on Plastic Duct & Soot Deposition on Throttle Valve Using CFD Simulation

2019-01-09
2019-26-0286
In recent time, with inception of BS VI emission regulation with more focus on fuel economy and emission, many engine parts which were conventionally made from metal are getting replaced with plastic components for reducing weight to attain better fuel economy. EGR is commonly used technique to reduce emissions in diesel engine along with after treatment devices. EGR reduces peak combustion temperature inside the combustion chamber thereby reducing NOx. EGR is bypassed from the exhaust manifold, cooled down in EGR cooler and mixed with intake air at upstream of the intake manifold. Throttle valve is used for controlling the charged air flow to cylinders for different vehicle operating conditions. With compact engine layout EGR mixer are often located near to throttle valve thereby increasing the possibility of soot deposition on throttle valve.
Technical Paper

Methodology to Determine Optimum Suspension Hard Points at an Early Design Stage for Achieving Steering Returnability in Any Vehicle

2019-01-09
2019-26-0074
Steering returnability while driving is one of the most important parameter which affects the drive pleasure and handling of a vehicle. Steering returnability refers to the automatic returning response of the steering wheel after taking a full turn while vehicle is being steered during driving. Evaluating steering response characteristics of any vehicle in a virtual environment at early stage of a product development saves significant development time and cost. Through this paper an attempt has been made to develop a methodology for selection of suspension hard points which influences steering returnability characteristics of a vehicle at an early product design stage. Conventionally, suspension kinematic parameters such as Caster angle, Steering axis inclination (SAI), etc. are iterated during vehicle design stage to achieve desired Steering returnability.
Technical Paper

Alternate Manufacturing Process for Automotive Input Shafts

2017-10-13
2017-01-5013
The input shafts are conventionally developed through Hot forging route. Considering upcoming new technologies the same part was developed through cold forging route which resulting in better Mechanical properties than existing hot forging process. It has added benefit of cost as well as environmental friendly. Generally, the part like Input shaft which having gear teeth, splines etc., will be manufactured through Hot forging process due to degree of deformation, availability of press capacity, diameter variations etc., This process consumes more energy in terms of electricity for heating the bar and also creates pollution to the atmosphere. Automotive input shaft design modified to accommodate cold forging process route to develop the shaft with press capacity of 2500T which gives considerable benefit in terms of mechanical and metallurgical Properties, close dimensional tolerances, less machining time, higher material yield when compared to hot forging and metal cutting operation.
Technical Paper

Analysis and Elimination of Howling Noise in Compact Utility Vehicle

2017-07-10
2017-28-1922
NVH is becoming one of the major factor for customer selection of vehicle along with parameters like fuel economy and drivability. One of the major NVH challenges is to have a vehicle with aggressive drivability and at the same time with acceptable noise and vibration levels. This paper focuses on the compact utility vehicle where the howling noise is occurring at higher rpm of the engine. The vehicle is powered by three cylinder turbocharged diesel engine. The noise levels were higher above 2500 rpm due to the presence of structural resonance. Operational deflection shapes (ODS) and Transfer path analysis (TPA) analysis was done on entire vehicle and powertrain to find out the major reason for howling noise at higher engine rpm. It is observed that the major contribution for noise at higher rpm is due to modal coupling between powertrain, half shaft and vehicle sub frame.
Technical Paper

Quantitative Evaluation of Steering System Rattle Noise

2017-07-10
2017-28-1952
Today’s automotive industry in the process of better fuel efficiency and aiming less carbon foot print is trying to incorporate energy saving and hybrid technologies in their products. One of the trends which has been followed by Original Equipment Manufacturers (OEMs) is the usage of Electric Power Steering (EPS) system. This has been an effective option to target fuel saving as compared to hydraulically assisted power steering system. EPS has been already tested successfully, not only on system level but also on vehicle level for endurance and performance by OEMs as per their norms and standards. Over the decade, NVH (noise, vibration & harshness) have become one of the touch points for customer perception about vehicle quality. This leads us to a commonly perceived problem in EPS or manual type steering system i.e. rattle noise.
Technical Paper

Acoustic Analysis of a Tractor Muffler

2017-06-05
2017-01-1791
Parametric model of a production hybrid (made up of reactive and dissipative elements) muffler for tractor engine is developed to compute the acoustic Transmission Loss (TL). The objective is to simplify complex muffler acoustic simulations without any loss of accuracy, robustness and usability so that it is accessible to all product development engineers and designers. The parametric model is a 3D Finite Element Method (FEM) based built in COMSOL model builder which is then converted into a user-friendly application (App) using COMSOL App builder. The uniqueness of the App lies in its ability to handle not only wide range of parametric variations but also variations in the physics and boundary conditions. This enables designers to explore various design options in the early design phase without the need to have deep expertise in a specific simulation tool nor in numerical acoustic modeling.
Technical Paper

Prediction of Hub Load on Power Steering Pump Using Dynamic Simulation and Experimental Measurement

2017-03-28
2017-01-0416
New trend in steering system such as EPS is coming up, but still hydraulic power steering system is more prevalent in today’s vehicles. Power steering pump is a vital component of hydraulic power steering system. Failure of steering pump can lead to loss of power assistance. Prediction of hub load on pump shaft is an important design input for pump manufacturer. Higher hub loads than the actual designed load of pump bearing may lead to seizure of pump. Pump manufacturer has safe limits for hub load. Simulations can assist for optimization of belt layout and placement of accessories to reduce the hub load. Lower hub load can have direct effect on improvement of pump durability. This paper deals with dynamic simulation of belt drive system in MSC.ADAMS as well as vehicle level measurement of hub load on power steering pump.
X