Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Design Validation of Innovative High Ground Clearance Tractor Kit

2024-01-16
2024-26-0066
An agricultural tractor is often modified for special farming applications such as horticulture where the standard design is not suitable or accessible. In such cases, farm equipment manufacturers are demanded frugal and cost effect Engineered farming solutions. One such design is the innovative High Ground Clearance Tractor (HGCT) kit offered to increase the Tractor height without damaging the crop during farming operations. In this paper, the author proposes a durability assessment method to evaluate the HGCT kit attachments to meet the durability criteria. Road load data acquisition is done to measure the acceleration and strain levels for various horticulture operations such as tillage, spraying and transportation. Actual operating conditions are simulated with the help of four poster durability setups inside the lab which helps to reduce the field testing for design iterations.
Technical Paper

Duty Cycle Based Fuel Consumption Calculation Using Simulation Methodology for Agricultural Tractor

2024-01-16
2024-26-0068
This project was undertaken with an objective to develop methodology by formulating set of procedures that would help in achieving the end goal. Once methodology is established, it paves way to optimize the end results more effectively which results in reduced lead time during product development. Methodology can either be based on pure experimental investigations or by simulations. Combination of mathematical and empirical approach is inherently followed in simulations, which helps in reducing the testing time and overall cost. Commercial vehicles (CV) have seen paradigm shift in the fuel consumption (FC) certification approaches, with an intention to align with 2016 Paris climate agreement. Use of simulation tool like VECTO for commercial vehicle FC certification has gained momentum in Europe. Overall experience gained in commercial vehicle FC simulation has motivated us to leverage the learnings for off-road applications like agricultural tractors.
Technical Paper

Headliner Composition Optimization without Compromising the Safety and Performance

2024-01-16
2024-26-0190
Reducing material wherever there is a possibility in automobile industry is inevitable for weight and cost saving. This paper explains about the possibilities of optimizing the material composition of automotive Headliners (also called as Roof liners) without affecting the performance and safety criteria. In this paper, we are targeting at optimizing the individual constituents of a composite Headliner. A conventional Headliner comprises of many sandwich layers of which PU foam shares the major percentage of the composition contributing to 80% of the Headliner thickness. In this paper, we are discussing about the optimization done in Headliner sandwich constituents without affecting the core performance parameters of headliner such as curtain airbag deployment, ergonomic regulations, drop test etc. By incorporating this change, without significant changes in other layers, overall weight reduction of ~24% and overall cost reduction of ~24% is achieved.
Technical Paper

Methodology for Jury Evaluation and Target Setting for Passenger Vehicle Operational Sound Quality

2024-01-16
2024-26-0227
In automotive market, with competitive car prices, build quality of a car will be a major distinguishing factor. Consumer's need for acoustic comfort has evolved from the removal of annoying noises to perceived sound quality. Operational sounds from electromechanical systems like sunroof system, window regulator, door lock system, HVAC etc. directly interact with users’ senses. The perceived acoustics comfort of these sounds are direct indicators of vehicle character and can influence customer’s buying decision. With the reduction in product development time and stringent cost constraints, a proper structured target setting methodology to benchmark & evaluate these operational sounds is crucial. In this paper, such a target setting methodology is proposed and discussed for operational sound quality evaluation. Electromechanical noises from various vehicles are measured using binaural head measurement system.
Technical Paper

Study and Analysis of Dynamic Seat Pressure Distribution by Human Subjects during Vehicle Running State on Test Tracks

2024-01-16
2024-26-0354
The purpose of this study is to conduct dynamic seat pressure mapping on vehicle seats during its operation on different test tracks under ambient environmental conditions for a defined speed. The test track comprises of pave roads, high frequency track, low frequency track and twist track. The variations in pressure distribution on seat during diverse road load inputs help to understand the seat cushion and back comfort for unique percentiles of human subjects ranging from 50th to 95th percentile population. For conducting the study, a sport utility vehicle (SUV) loaded with leatherette seats has chosen. Totally six participants (human subjects), five male and one female selected for the study based on their BMI (Body mass index) and body morphology. Pressure mats suitable for taking dynamic load inputs and able to log the data at a defined sampling rate mounted on seats and secured properly. The pressure mats should cover the seat cushion, bolster areas and back seat completely.
Technical Paper

An Innovative and Customer Centric Approach on Validating Telematics Based Fleet Optimization Feature for Small Commercial Vehicles

2024-01-16
2024-26-0378
Commercial transportation is the key pillar of any growing economy. Light and Small commercial vehicles are increasing every day to cater the logistics demand, but there is always a gap between customer’s actual and desired operational efficiency. This is because of lack of organized fleet and efficient fleet operation. The major requirement of fleet owners is timely delivery, high productivity, downtime reduction, real time tracking, etc., Automakers are now providing fleet management application in modern LCV & SCV to satisfy the fleet operator requirement. However, any feature malfunction, consignment mismatch, wrong notification, missed alerts, etc., can incur huge loss to fleet operator and disrupt the entire supply chain. Hence it is very critical to extensively validate the telematics features in fleet management application. This paper explains the approach for exhaustive validation strategy of fleet management applications (B2B) from end user perspective.
Technical Paper

Fuel Economy Measurement in Small Commercial Vehicles with Sub 1L BS6 Diesel Engines an Innovative Approach to Accurately Measure Fuel Economy

2022-03-29
2022-01-0575
In developing countries, the commercial vehicle industry is one of the key drivers for economic growth. The commercial vehicle industry in India is expected to reach 11,80,000 units by 2025 with a CAGR of 18% from CY 2020 to CY 2025 [1]. In the price sensitive segment of small commercial vehicles, it is imperative to incorporate accurate fuel economy measurement techniques during product development stage to deliver maximum value to the customer. In this approach, measuring the fuel consumption of small commercial vehicles in real world driving conditions in real time is one of the most critical aspects in engine calibration development and fine tuning. One of the challenges in measuring fuel consumption in sub 1 liter diesel engines is the very low fuel flow rate in the fuel feed line which keeps varying as per the driver demand.
Technical Paper

Evaluation of Fretting Phenomenon in Gearbox and Allied Failures

2022-03-29
2022-01-0648
This paper takes a review of fretting phenomenon on splines of the engaging gears and corresponding splines on shaft of automotive transmission and how it leads to failure of other components in the gearbox. Fretting is a special wear process which occurs at the contact area of two mating metal surfaces when subject to minute relative oscillating motion under vibration. In automotive gearbox, which is subjected to torsional vibrations of the powertrain, the splines of engaging gears and corresponding shaft may experience fretting, especially when the subject gear pair is not engaged. The wear debris formed under fretting process when oxidizes becomes very hard and more abrasive than base metal. These oxidized wear particles when comes in mesh contact with nearby components like bearings, gears etc. may damage these parts during operation and eventually lead to failure.
Technical Paper

BIW Multidisciplinary Design Optimization (MDO) with Equivalent Static Load Method - Quick MDO Methodology

2021-04-06
2021-01-0287
Multidisciplinary Design Optimization (MDO) of an automobile body structure is a challenging task as it involves multiple, often conflicting requirements of safety, durability & NVH. Conventionally MDO process requires running large number of design of experiments (DOE) to explore the full design space and to build response surface for optimization. As the safety simulations are highly nonlinear in nature, they typically require significant amount of computational time and resources. Hence the conventional MDO approach is too expensive if too many design variables are simultaneously considered. In this paper, an alternative approach using Equivalent Static Load (ESL) method has been suggested for MDO which is quicker & accurate. The basic idea of the Equivalent Static Load-Method (ESL) is to divide the original nonlinear dynamic optimization problem into an iterative linear optimization and nonlinear analysis process.
Technical Paper

Investigations on the Effect of Synchronizer Strut Detent Groove Profile on Static and Dynamic Gear Shift Quality of a Manual Transmission

2020-09-25
2020-28-0319
Automotive manufacturers are constantly working towards enhancing the driving experience of the customers. In this context, improving the static and dynamic gear shift quality plays a major role in ensuring a pleasant and comfortable driving experience. Moreover, the gear shift quality of any manual transmission is mainly defined by the design of the synchronizer system. The synchronizer sleeve strut detent groove profile plays a vital role in defining the performance of the synchronizer system by generating the minimum required pre-synchronization force. This force is important to move the outer synchronizer ring (blocker ring) to the required index position and to wipe-out the oil from the conical friction surfaces to build rapid high cone torque. Both these functional requirements are extremely critical to have a smooth and quick synchronization of the rotating parts under dynamic shift conditions.
Technical Paper

Unloaded Synchronizer Wear in Manual Transmission Gearbox

2020-09-25
2020-28-0334
Synchronizers are the most critical parts of a manual transmission. There are classical calculations available for the synchronizer design and studies are available for the normal functioning of synchronizer rings which describes how the synchronizer behaves in the event of gear shifting. The objective of this study is to describe the synchronizer behavior when synchronizers are not functional, i.e., in other gear engaged condition and the rings are free. This study describes the failure mechanism of the unused synchronizer rings which are moving freely in the packaging space. The findings of this synchronizer design cannot be limited only for synchronizer performance and standard durability calculations. To ensure proper function of synchronizer rings and to achieve the required life the external parameters like clearances, lubrication, clutch design for dampening torsional vibration from the engine are to be considered.
Technical Paper

Effect of Flange Radius and Width on the Fatigue Life of Wheel Hub under Cornering Loads

2020-04-14
2020-01-1232
Automotive manufacturers are concerned about the safety of its customers. Safety critical components like wheel hub are designed considering the severe loads generated from various customer usage patterns. Accelerated tests, which are derived from Real World Usage Patterns (RWUP), are conducted at vehicle level to ensure the wheel hub meet the durability targets. Load and strain measurement are done to understand the critical lateral loading undergone by the wheel hub. Measured data is synthesized to drive the duty cycle. Finite Element (FE) Analysis of Wheel end is performed at module level considering measured loads to capture the exact load path in physical test. Simulation results are compared with the measured strain for validating the FE analysis procedure. FE analysis was repeated for different wheel hub designs, combinations of different flange radius (R) and flange width (t), to understand the effect of the two critical dimensions on wheel hub durability.
Technical Paper

Virtual Validation of BHL Dipper Using CAE and Correlation with Test Data

2020-04-14
2020-01-0515
Use of Computer Aided Engineering (CAE) tools for virtual validation has become an essential part of every product development process. Using CAE tools, accurate prediction of potential failure locations is possible even before building the proto. This paper presents a detailed case study of virtual validation of Backhoe Loader (BHL) dipper arm using CAE tools (MBD: Multi Body Dynamics and FEA: Finite Element Analysis) and comparison of simulation results with test data. In this paper, we have illustrated the modelling of Backhoe Loader in MSc ADAMS software. The detail ADAMS model was created and validated. The component mass, Center of Gravity (C.G) and Mass Moment of Inertia (MOI) was taken from CAD data. Trenching is simulated by operating the different hydraulic cylinders of the BHL. Loader arm cylinders and stabilizer cylinders are operated to lift the machine tires above the ground level.
Technical Paper

Hybrid Optimization Methodology for Flexplate of Automatic Transmission

2020-04-14
2020-01-0916
For Automatic transmission application, crankshaft torque is transferred to torque converter through flex plate. As the flex plate has no functional requirement of storing energy as in case of Manual Transmission (MT) flywheel, flex plate design can be optimized to great extent. Flex plate structure must have compliance to allow the axial deformation of torque convertor due to ballooning pressure generated inside the converter. Flex plate experiences dynamic torque and centrifugal forces due to high rotational speed. It should have compliance to accommodate the assembly misalignments with torque convertor in both axial and radial directions. In this paper, sequential and hybrid optimization techniques are described to optimize the flex plate design with stress, stiffness and mass as design constraints. The load path, corrugation length and axial stiffness of flex plate captured accurately using this hybrid optimization.
Technical Paper

Life Estimation and Thermal Management of a 48V Mild-Hybrid Battery Pack

2019-04-02
2019-01-1001
The 48V mild-Hybrid system uses a 48V Lithium - Ion battery pack to boost the engine performance, to harness recuperative energy and to supply the accessory boardnet power requirement. Thermal management of the 48V battery pack is critical for its optimal utilization to realize the mild hybrid functionality, to meet CO2 reduction targets and useful life particularly under usage in hot ambient conditions. This paper discusses the various challenges and options of thermal management for the 48V battery pack based on the usage pattern and environmental conditions. The lifetime for a passively cooled battery pack is estimated for a typical Indian usage pattern. Active-air cooling is evaluated for the thermal management of the 48V mild-Hybrid battery pack. The tradeoffs are compared in terms of availability of hybrid functions and battery life.
Technical Paper

Integration of 1D and 3D CFD Software for Cabin Cool Down Simulation

2018-04-03
2018-01-0773
This study presents a method for a cool down simulation of passenger compartments. The purpose was to integrate the 3D Computational Fluid Dynamics (CFD) software StarCCM+ with the 1D thermal management software KULI. The targets were to achieve accurate prediction of temperature diffusion inside the cabin for a transient cycle simultaneously reducing the modelling effort and CPU-time consumption. The 1D simulation model was developed in KULI and the flow field data required to simulate mass flow and diffusion inside the cabin was implemented from Star CCM+. The simulation model consists of a multi-zone cabin and models the complete refrigerant circuit consisting of evaporator, condenser, Thermal Expansion Valve (TXV) and compressor. This paper describes the process flow, definition of the inputs required and finally the validation of the simulation data with experiments.
Technical Paper

Generating a Real World Drive Cycle–A Statistical Approach

2018-04-03
2018-01-0325
Drive cycles have been an integral part of emission tests and virtual simulations for decades. A drive cycle is a representation of running behavior of a typical vehicle, involving the drive pattern, road characteristics and traffic characteristics. Drive cycles are typically used to assess vehicle performance parameters, perform system sizing and perform accelerated testing on a test bed or a virtual test environment, hence reducing the expenses on road tests. This study is an attempt to design a relatively robust process to generate a real world drive cycle. It is based on a Six Sigma design approach which utilizes data acquired from real world road trials. It explicitly describes the process of generating a drive cycle which closely represents the real world road drive scenario. The study also focuses on validation of the process by simulation and statistical analysis.
Technical Paper

A Case Study on Durability Analysis of Automotive Lower Control Arm Using Self Transducer Approach

2018-04-03
2018-01-1208
A competitive market and shrinking product development cycle have forced automotive companies to move from conventional testing methods to virtual simulation techniques. Virtual durability simulation of any component requires determination of loads acting on the structure when tested on the proving ground. In conventional method wheel force transducers are used to extract loads at wheel center. Extracted wheel center forces are used to derive component loads through multi-body simulation. Another conventional approach is to use force transducers mounted directly on the component joineries where load needs to be extracted. Both the methods are costly and time-consuming. Sometimes it is not feasible to place a load cell in the system to measure hard point loads because of its complexities. In that case, it would be advantageous to use structure itself as a load transducer by strain gauging the component and use those strain values to extract hard point loads in virtual simulation.
Technical Paper

Systematic Approach for Structural Optimization of Automotive Systems

2017-10-13
2017-01-5018
In today’s cost-competitive automotive market, use of finite element simulations and optimization tools has become crucial to deliver durable and reliable products. Simulation driven design is the key to reduce number of physical prototypes, design iterations, cost and time to market. However, simulation driven design optimization tools have struggled to find global acceptance and are typically underutilized in many applications; especially in situations where the algorithms have to compete with existing know-how decision making processes. In this study, systematic multi-phase approach for optimization driven design is presented. Approach includes three optimization phases. In first phase, topology optimization is performed on concept BIW design volume to identify critical load paths. Architectural inputs from topology are used to design base CAD.
Technical Paper

Front Loading of Foot Swing Envelop during Egress to Vehicle Architecture

2017-07-10
2017-28-1960
In automotive industry, design of vehicle to end customer with proper ergonomics and balancing the design is always a challenge, for which an accurate prediction of postures are needed. Several studies have used Digital Human Models (DHM) to examine specific movements related to ingress and egress by translating complex tasks, like vehicle egress through DHMs. This requires an in-depth analysis of users to ensure such models reflect the range of abilities inherent to the population. Designers are increasingly using digital mock-ups of the built environment using DHMs as a means to reduce costs and speed-up the “time-to-market” of products. DHMs can help to improve the ergonomics of a product but must be representative of actual users.
X