Refine Your Search

Topic

Author

Search Results

Technical Paper

Model Based Charge Control for 3-Cylinder TGDI Miller Engine Containing Variable Geometry Turbocharger

2024-01-16
2024-26-0043
For ensuring environmental safety, strong emphasis on CO2 pollution reduction is mandated which led to evolution of miller cycle engines. However, the inherent Miller engine characteristic is the lower volumetric efficiency when compared to otto engines because of which small turbo chargers with variable geometry turbines are used to induct air into the engine. With miller engine and VGT turbo charger combination arises the challenges of charge controllability because of lower inertia and reduced vane control area. With conventional turbo charger control methods, the response time is slow thereby leading to turbo lag or severe over boosting, this is overcome by accurate engine modelling and using the same as input for charger control.
Technical Paper

Experimental Analysis of Multi-Link Rigid Axle Suspension Camber Variation with Vehicle Load

2024-01-16
2024-26-0054
Increased popularity on SUV category in the market has led to high focus on performance attributes of SUVs. Considering high weight & CoG achieving target handling performance is always a challenge. Static Wheel Alignment parameters, especially Camber have shown significant contribution in Handling attributes of vehicle. This paper presents an experimental study on change in wheel camber under the influence of different vehicle loading conditions. In SUVs, generally wheel is subjected to large deflection from its high static loads which makes it quite difficult to maintain an ideal camber angle. Hence, it is important to analyze the camber angle variations under actual loading conditions. An in-house fixture is developed to emulate the actual vehicle loading conditions at rear wheel end. The multi-link rigid axle suspension with watt’s link assembly is mounted on the chassis-frame which is rigidly fixed to ground, and loads are achieved through hydraulic actuators at Wheels.
Technical Paper

NVH Refinement of Structure-Borne Tonal Noise in Electric Vehicle

2024-01-16
2024-26-0198
Globally all OEMs are moving towards electric vehicle to reduce emission and fuel cost. Customers expect highest level of refinement and sophistication in electric vehicle. At present, the customers are sensitive to high pitched tonal noise produced by electric powertrain which gives a lot of challenges to NVH engineers to arrive at a cost-effective solution in less span of time. Higher structure borne tonal noise is perceived in electric vehicle at the vehicle speeds of ~ 28 kmph, 45 kmph and 85 kmph. The test vehicle is front wheel drive compact SUV powered by motor in the front. The electric drive unit is connected to cradle and subframe with help of three mounts. Transfer path analysis (TPA) using blocked forces method is carried out to identify the exact forces of the electric drive unit entering the mounts. Powertrain mount is characterized by applying the predicted forces and dynamic stiffness at problematic frequency is measured.
Technical Paper

Driveline Vibration Reduction in Light Weight all Wheel Drive Vehicle

2024-01-16
2024-26-0229
The test vehicle is All Wheel Drive (AWD) vehicle which is powered by four-cylinder engine. The power is transferred from the powertrain to the wheel through power transfer unit (PTU), propeller shaft, flexible rubber coupling and Integrated Rear Differential Assembly (IRDA) . Higher boom noise and vibration levels are observed when driving the vehicle in 4th gear WOT conditions. NVH levels are dominant between 1150 rpm to 2100 rpm and at 2200 rpm in 2nd order and 4th order respectively. Operational deflection shape (ODS) analysis is carried out on entire vehicle to identify the location where maximum deflection is observed at the problematic frequency. It is identified that higher torsional excitation from the powertrain is exciting the IRDA pitching mode and the propeller shaft bending mode which is the reason for higher 2nd order and 4th order NVH levels. The driveline forces are entering the body through the IRDA and rear cradle bushes.
Technical Paper

Light Weighting of Tractor Components Using Virtual Optimization Technique

2024-01-16
2024-26-0390
Usually conventional iterative methods of optimization will consume more time to optimize the given design. Mostly, it becomes very difficult if multiple loads are acting on the structure contradicting each other. CAE based optimization technique becomes more useful in such cases to optimize the given design and achieve weight reduction. Optimization methods offers guidance to expedite solutions, resulting in a substantial reduction in product development time. Nowadays, optimization became inevitable part among the virtual validation processes of design in industries. A wide range of optimization methods have been effectively employed in the design of tractor components, especially mounting brackets, chassis and skid housing for the development of off-road vehicle. Based on the design stage, various optimization techniques were followed i.e. Topology, size and shape. Depending upon the available analysis time & Design freedom, determines the type of optimization approach to be used.
Technical Paper

Investigation of Synchronizer Ring Failure in a Commercial Vehicle Transmission

2024-01-16
2024-26-0383
The commercial vehicles market is dominated by manual transmission, due to lower ownership cost. Generally, commercial vehicles are used in large numbers by the fleet owners. The transmission endurance life is very important to a vehicle owner. On the other hand, driver fatigue can be reduced with a smooth gear change process. The gear change process in a manual transmission is carried out with the help of the synchronizer pack. The crucial function of a synchronizer pack in an automotive transmission is to match the speed of the target gear for smooth gear shifting. In a transmission, the loose and the weakest part is the synchronizer ring. The failure of the synchronizer affects smooth gear shifting and it also affects the endurance life of the transmission. The synchronizer ring can fail due to poor structural strength, synchronizer liner wear, synchronizer liner burning, etc.
Technical Paper

HVAC NVH Refinement in Electric Vehicle

2024-01-16
2024-26-0206
Customers expect more advanced features and comfort in electric vehicles. It is challenging for NVH engineers to reduce the vibration levels to a great extent in the vehicle without adding cost and weight. This paper focuses on reducing the tactile vibration in electric vehicle when AC is switched ON. Vibration levels were not acceptable and modulating in nature on the test vehicle. Electric compressor is used for cabin cooling and battery cooling in the vehicle. Compressor is connected to body with the help of isolators. Depending upon cooling load, the compressor operates between 1000 rpm and 8000 rpm. The 1st order vibration of compressor was dominant on tactile locations at all the compressor speeds. Vibration levels on steering wheel were improved by 10 dB on reducing the dynamic stiffness of isolators. To reduce the transfer of compressor vibration further, isolators are provided on HVAC line connection on body and mufflers are provided in suction and discharge line.
Technical Paper

Evaluation of Fretting Phenomenon in Gearbox and Allied Failures

2022-03-29
2022-01-0648
This paper takes a review of fretting phenomenon on splines of the engaging gears and corresponding splines on shaft of automotive transmission and how it leads to failure of other components in the gearbox. Fretting is a special wear process which occurs at the contact area of two mating metal surfaces when subject to minute relative oscillating motion under vibration. In automotive gearbox, which is subjected to torsional vibrations of the powertrain, the splines of engaging gears and corresponding shaft may experience fretting, especially when the subject gear pair is not engaged. The wear debris formed under fretting process when oxidizes becomes very hard and more abrasive than base metal. These oxidized wear particles when comes in mesh contact with nearby components like bearings, gears etc. may damage these parts during operation and eventually lead to failure.
Technical Paper

Evaluation of Hardtop Roof Mounting Schemes for High Speed Performance and Noise

2021-04-06
2021-01-0292
Customer comfort has been at the core of any vehicle design. A segment of vehicle wherein the provision given for roof to be removed to enhance the customer experience. A similar vehicle is the subject matter for the evaluation here. The vehicle being off-roader, customer buying such vehicles are passionate about these lifestyle vehicle’s performance aspects. The roof components are plastic and are bolted with the BIW structure with sealing in place at the interface. The windshield angle being close to vertical, there is a tendency for flow separation at the front tip of roof, while vehicle driven at speed. This creates significant pressure difference across the roof surface, leading to vertical deformation of roof between the bolted mounts. In case the magnitude of deformations not controlled, the reduced sealing effectiveness lets air gushing in the cabin and make noise which can be audible to customer.
Technical Paper

A Comprehensive Study on the Design and Development Methodology of Automotive Steel Wheel Rims Undergoing Highly Transient Cornering Events

2021-04-06
2021-01-0827
Wheel rim is one of the most critical safety parts in a vehicle. Strength in cornering loading is one of the most important durability test requirements for automotive steel wheel rim apart from other loading conditions like vertical and impact loads. Based on the category of vehicle and customer usage pattern, the accelerated cornering test is derived for testing steel wheel rims. The simulation and certification of steel wheel rim for the required dynamic durability testing requirement involves many steps ranging from acceptance criteria derivation to reliably addressing known potential failure zones in steel wheel rims. Nave radius and crown are sensitive to cornering loads, given the pitch circle diameter at the concept stage, the known effects of these key parameters are determined from DOE and used as reliable indicators to arrive at the shape and section of the steel wheel rim.
Technical Paper

Passenger Car Door Closing Effort Prediction Using Virtual Simulation and Validation

2021-04-06
2021-01-0333
In the automobile industry, the door closing effort spells out the engineering and quality of the vehicle. After the visual impact a vehicle has on the customer, the doors are most likely the very first part of the vehicle he/she encounters, to enter and exit the vehicle. One of the customer’s very first impressions about the quality of the car is given by the behavior of the doors when opening and closing, the swinging velocity and the energy that is required to obtain a full latching that the door makes when closed by the user. Door closing effort gives an indication of how good or bad the vehicle is engineered. The purpose of this paper is to propose modifications in the door system which help in reduction of door closing effort or velocity by two different methods, EZ Slam Door and Bungee Rope. In this paper, parameters like hinge friction, hinge axis inclination, sealing, latch and air bind effect are analyzed which affect door closing effort.
Technical Paper

Unloaded Synchronizer Wear in Manual Transmission Gearbox

2020-09-25
2020-28-0334
Synchronizers are the most critical parts of a manual transmission. There are classical calculations available for the synchronizer design and studies are available for the normal functioning of synchronizer rings which describes how the synchronizer behaves in the event of gear shifting. The objective of this study is to describe the synchronizer behavior when synchronizers are not functional, i.e., in other gear engaged condition and the rings are free. This study describes the failure mechanism of the unused synchronizer rings which are moving freely in the packaging space. The findings of this synchronizer design cannot be limited only for synchronizer performance and standard durability calculations. To ensure proper function of synchronizer rings and to achieve the required life the external parameters like clearances, lubrication, clutch design for dampening torsional vibration from the engine are to be considered.
Technical Paper

Experimental Investigation on the Effect of Tire Pressure on Ride Dynamics of a Passenger Car

2019-04-02
2019-01-0622
Ride is essentially the outcome of coupled dynamics of various involved sub-systems which make it too complex to deal analytically. Tires, amongst these, are known to be highly nonlinear compliant systems. Selection of tires specifications such as rated tyre pressure, etc. are generally decided through subjective assessment. While experts agree that tyre pressure affects the attributes such as ride to a noticeable degree, the quantification of the change often remains missing. In the current work, vibration levels of various sub-systems relevant to ride in an SUV are measured for three different tyre pressures at different speeds over the three randomly generated roads. For the purpose, artificial road profiles of classes A, B and C are synthesized from the spectrum of road classes defined in ISO 8608:2016 and reproduced on a four-poster test rig.
Technical Paper

Manufacturing of Transmission Quill Gear by Sinter Hardening

2019-01-09
2019-26-0165
Transmission quill gears are hot forged steel parts often used in constant mesh manual transmissions. The quill gear, which helps to transmit the power from input drive shaft to output shaft through driving gears. It’s having external teeth which is positively engaged with driving gear and sleeve. During gear selection sleeve take load from input shaft and transmit to driven gear. Quill gear directly engaged with driving gears on outer surface and bearing in inner surface which needs to have high strength and durability. These properties can be improved by carburization heat treatment in existing design such processes can lead to increased costs. We have developed quill gear through powder metallurgical process and then cooled rapidly in the furnace to get high strength and wear properties. Material composition are optimized to suit for sinter hardening process conditions.
Technical Paper

Novel, Compact and Light Weight Plenum Assembly for Automobiles

2017-07-10
2017-28-1924
Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
Technical Paper

Scaling Model of Heat Exchangers in Automotive Air Conditioning Systems

2016-04-05
2016-01-0227
Heat exchangers are thermoregulatory system of an automotive air conditioning system. They are responsible for heat exchange between refrigerant and air. Sizing of the heat exchanger becomes critical to achieve the required thermal performance. In the present work, the behavior of heat exchanger with respect to change in size is studied in detail by developing a scaling model. The limited experiments have been conducted for 3 different condensers. Commercially available 1D tool GT Suite is used for simulations. The heat exchangers are modeled using COOL3D module of GT Suite. The experimental thermal capacities of heat exchanger are compared with the simulated values. A good agreement up to ±2.3% is found between the experiments and simulations. Then developed scaling model in GT Suite is used for predicting the thermal behavior of heat exchangers by changing the size of the heat exchanger. Scaled thermal capacities of each model is compared with the corresponding experimental results.
Technical Paper

Migration Phenomenon in Gear Teeth of Hypoid Crown Wheels (Ring Gears) - Controlling and Eliminating the Same in Manufacturing

2016-02-01
2016-28-0214
The paper talks about the migration phenomenon that is observed in gears. The phenomenon discussed here is that observed on hypoid gears which due to their high spiral angles cause the issue to be more sensitive, but the analogy to other gears is applicable. Mahindra manufactures hypoid gear sets for its axles in-house that go on a wide range of its products; with performance benefits also come the stringent quality requirements for hypoid gear sets. Migration is the phenomenon that causes the furling or unfurling of individual gear teeth with respect to each other. This in effect causes the circular tooth spacing between two teeth to become non-uniform. This has a direct effect on the performance of the mated gear set.
Technical Paper

A Supervisory Learning Based Two-Wheeler Drive Pattern

2015-04-14
2015-01-0221
The life of a two-wheeler and its parts depend much on its usage during its years of running. The quality of its parts determine the life and efficiency; however the handling of the two-wheeler also plays a major role in estimating it's life and other performance parameters. Hence, it is beneficial to have an efficient system which enhances the life of a two-wheeler and also gives better mileage. This paper constitutes an efficient drive pattern system which addresses the above. This system consists of two main parts: the data collection system and an Android-based mobile application which runs on a mobile phone. The data collection system collects data from various sensors on the vehicle and then the data is processed and sent to the mobile phone of the rider during the run time of the two-wheeler. The application uses this data to depict useful information like drive pattern and various indicators.
Technical Paper

Detent Profile Optimization to Improve Shift Quality of Manual Transmissions

2015-04-14
2015-01-1135
The customer of today is sensitive towards shift quality. The demand is for a crisp and precise gear shift with low shift effort. The impulses from synchronizers make shifts feel notchy. After synchronization the blocker ring releases the sleeve. The sleeve then hits the teeth of the clutch body ring. The second impulse causes a phenomenon called double bump. This can be felt at the hand and makes a shift feel notchy or sluggish. An ideal way to overcome this is to optimize the detent profile. This paper explains in detail the various factors that contribute to the perceived shift feel. Various methods to optimize the forces on the knob by changing the detent profile are discussed. Gear Shift Quality Assessment (referred as GSQA henceforth) is a tool to acquire the required shift feel data. Using this tool shift efforts and kinematics of a 5 speed manual transmission are plotted for illustration. The calculations required to optimize the detent profile are explained in detail.
Technical Paper

Evaluation and Comparative Study of ValveTrain Layouts with Different Rocker Ratio

2014-10-13
2014-01-2877
The Valve Train system is an integral part of any engine and the impact of its design is very crucial, particularly in high speed engines. Maintaining the required valve timing throught the engine operating speed and longer component life are the two important parameters which drive current valvetrain designs. An engine ValveTrain system designed for a valve lift of 7mm is to be modified for an increased valve lift of 8mm. A study was conducted to understand which design parameters are to be changed /modified to make this possible. For this study, the valvetrain of an air-cooled motorcycle engine is taken up. The valvetrain arrangement was an Over Head Camshaft (OHC) design with a Roller-Follower. A 1D commercially available numerical code was used to simulate the kinematics and dynamics of the system.
X