Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optimization-Based Robust Architecture Design for Autonomous Driving System

2019-04-02
2019-01-0473
With the recent advancement in sensing and controller technologies architecture design of an autonomous driving system becomes an important issue. Researchers have been developing different sensors and data processing technologies to solve the issues associated with fast processing, diverse weather, reliability, long distance recognition performance, etc. Necessary considerations of diverse traffic situations and safety factors of autonomous driving have also increased the complexity of embedded software as well as architecture of autonomous driving. In these circumstances, there are almost countless numbers of possible architecture designs. However, these design considerations have significant impacts on cost, controllability, and system reliability. Thus, it is crucial for the designers to make a challenging and critical design decision under several uncertainties during the conceptual design phase.
Technical Paper

Phenomenological Investigations of Mid-Channel Ash Deposit Formation and Characteristics in Diesel Particulate Filters

2019-04-02
2019-01-0973
Accumulation of lubricant and fuel derived ash in the diesel particulate filter (DPF) during vehicle operation results in a significant increase of pressure drop across the after-treatment system leading to loss of fuel economy and reduced soot storage capacity over time. Under certain operating conditions, the accumulated ash and/or soot cake layer can collapse resulting in ash deposits upstream from the typical ash plug section, henceforth termed mid-channel ash deposits. In addition, ash particles can bond (either physically or chemically) with neighboring particles resulting in formation of bridges across the channels that effectively block access to the remainder of the channel for the incoming exhaust gas stream. This phenomenon creates serious long-term durability issues for the DPF, which often must be replaced. Mid-channel deposits and ash bridges are extremely difficult to remove from the channels as they often sinter to the substrate.
Technical Paper

Experiments and Analyses on Stability/Mid-Channel Collapse of Ash-Deposit Wall Layers and Pre-Mature Clogging of Diesel Particulate Filters

2019-04-02
2019-01-0972
The conventional concept of soot and ash wall deposits (i.e. cake-layers) gradually building up along the channels of a ceramic honeycomb and then periodically or continuously being swept downstream toward the end-plugs of the channels may not always occur in practice. When deposits irregularly form on or detach from the walls, causing premature clogging usually around the mid-sections of the channels (also known as Mid-Channel Collapse), and the particulate filter is prone to experiencing significantly elevated back pressure, resulting in the need for earlier repair or replacement than desired. Here we describe related experiments that were performed, accompanied by analysis and simulation, in order to investigate the factors that contribute to the patterns of wall deposits that form-particularly of ash-and the effects of these irregular patterns.
Technical Paper

Reliable Processes of Simulating Liner Roughness and Its Lubrication Properties

2019-04-02
2019-01-0178
Topology of liner finish is critical to the performance of internal combustion engines. Proper liner finish simulation processes lead to efficient engine design and research. Fourier methods have been well studied to numerically generate liner topology. However, three major issues wait to be addressed to make the generation processes feasible and reliable. First, in order to simulate real plateau honed liners, approaches should be developed to calculate accurate liner geometric parameters. These parameters are served as the input of the generation algorithm. Material ratio curve, the common geometry calculation method, should be modified so that accurate root mean square of plateau height distribution could be obtained. Second, the set of geometric parameters used in generating liner finish (ISO 13565-2) is different from the set of parameters used in manufacturing industry (ISO 13565-3). Quantitative relations between these two sets should be studied.
Journal Article

Modeling of Oil Transport between Piston Skirt and Cylinder Liner in Internal Combustion Engines

2019-04-02
2019-01-0590
The distribution of lubricating oil plays a critical role in determining the friction between piston skirt and cylinder liner, which is one of the major contributors to the total friction loss in internal combustion engines. In this work, based upon the experimental observation an existing model for the piston secondary motion and skirt lubrication was improved with a physics-based model describing the oil film separation from full film to partial film. Then the model was applied to a modern turbo-charged SI engine. The piston-skirt FMEP predicted by the model decreased with larger installation clearance, which was also observed from the measurements using IMEP method at the rated. It was found that the main period of the cycle exhibiting friction reduction is in the expansion stroke when the skirt only contacts the thrust side for all tested installation clearances.
Technical Paper

Curved Beam Based Model for Piston-Ring Designs in Internal Combustion Engines: Working Engine Conditions Study

2018-04-03
2018-01-1277
A new multi-scale curved beam based model was developed for piston-ring designs. This tool is able to characterize the behavior of a ring with any cross section design. This paper describes the conformability and ring static twist calculation. The conformability part model the static behavior of the ring in working engine conditions. The model employs the computation scheme that separates the meshing of the structure and local force generation. Additional to the conventional static ring-bore conformability analysis, the conformability model is designed to examine ring-bore and ring-groove interactions in a running engine under varying driving forces and localized lubrication conditions. We made Improvements on the way to handle the effects of the radial temperature gradient compared to the existing models. Examples are given on the effects of ring rotation on the interaction of the ring and a distorted bore as well as the change of local lubrication conditions.
Technical Paper

Curved Beam Based Model for Piston-Ring Designs in Internal Combustion Engines: Closed Shape Within a Flexible Band, Free-Shape and Force in Circular Bore Study

2018-04-03
2018-01-1279
A new multi-scale curved beam based model was developed for piston-ring designs. This paper describes the free-shape, force in circular bore and closed shape within a flexible band (ovality) related parts. Knowing any one of these distributions, this model determines the other two. This tool is useful in the sense that the characterization of the ring is carried out by measuring its closed shape within a flexible band which is more accurate than measuring its free shape or force distribution in circular bore. Thus, having a model that takes the closed shape within a flexible band as an input is more convenient and useful based on the experiments carried out to characterize the ring.
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

2018-04-03
2018-01-1260
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
Technical Paper

A One-Line Correlation for Predicting Oil Vaporization from Liner for IC Engines

2018-04-03
2018-01-0162
The increasingly stringent regulations for fuel economy and emissions require better optimization and control of oil consumption. One of the primary mechanisms of oil consumption is vaporization from the liner; we consider this as the “minimum oil consumption (MOC).” This paper presents a physical-mathematical cycle model for predicting the MOC. The numerical simulations suggest that the MOC is markedly sensitive to oil volatility, liner temperature, engine load and speed but less sensitive to oil film thickness. A one-line correlation is proposed for quick MOC estimations. It is shown to have <15% error compared to the cycle MOC computation. In the “dry region” (between top ring and OCR at the TDC), oil is depleted due to high heat and continual exposure to the combustion chamber.
Technical Paper

Modeling the Evolution of Fuel and Lubricant Interactions on the Liner in Internal Combustion Engines

2018-04-03
2018-01-0279
In internal combustion engines, a portion of liquid fuel spray may directly land on the liner and mix with oil (lubricant), forming a fuel-oil film (~10μm) that is much thicker than the original oil film (~0.1μm). When the piston retracts in the compression stroke, the fuel-oil mixture may have not been fully vaporized and can be scraped by the top ring into the 1st land crevice and eventually enter the combustion chamber in the format of droplets. Studies have shown that this mechanism is possibly a leading cause for low-speed pre-ignition (LSPI) as the droplets contain oil that has a much lower self-ignition temperature than pure fuel. In this interest, this work aims to study the oil-fuel interactions on the liner during an engine cycle, addressing molecular diffusion (in the liquid film) and vaporization (at the liquid-gas interface) to quantify the amount of fuel and oil that are subject to scraping by the top ring, thereby exploring their implications on LSPI and friction.
Technical Paper

Developing Design Guidelines for an SCR Assembly Equipped for RF Sensing of NH3 Loading

2018-04-03
2018-01-1266
The Cu-zeolite (CuZ) SCR catalyst enables higher NOx conversion efficiency in part because it can store a significant amount of NH3. “NH3 storage control”, where diesel exhaust fluid (DEF) is dosed in accord with a target NH3 loading, is widely used with CuZ catalysts to achieve very high efficiency. The NH3 loading actually achieved on the catalyst is currently estimated through a stoichiometric calculation. With future high-capacity CuZ catalyst designs, it is likely that the accuracy of this NH3 loading estimate will become limiting for NOx conversion efficiency. Therefore, a direct measurement of NH3 loading is needed; RF sensing enables this. Relative to RF sensing of soot in a DPF (which is in commercial production), RF sensing of NH3 adsorbed on CuZ is more challenging. Therefore, more attention must be paid to the “microwave resonance cavity” created within the SCR assembly. The objective of this study was to develop design guidelines to enable and enhance RF sensing.
Journal Article

Development and Application of Ring-Pack Model Integrating Global and Local Processes. Part 1: Gas Pressure and Dynamic Behavior of Piston Ring Pack

2017-03-28
2017-01-1043
A new ring pack model has been developed based on the curved beam finite element method. This paper describes the first part of this model: simulating gas pressure in different regions above piston skirt and ring dynamic behavior of two compression rings and a twin-land oil control ring. The model allows separate grid divisions to resolve ring structure dynamics, local force/pressure generation, and gas pressure distribution. Doing so enables the model to capture both global and local processes at their proper length scales. The effects of bore distortion, piston secondary motion, and groove distortion are considered. Gas flows, gas pressure distribution in the ring pack, and ring structural dynamics are coupled with ring-groove and ring-liner interactions, and an implicit scheme is employed to ensure numerical stability. The model is applied to a passenger car engine to demonstrate its ability to predict global and local effects on ring dynamics and oil transport.
Journal Article

Development and Application of Ring-Pack Model Integrating Global and Local Processes. Part 2: Ring-Liner Lubrication

2017-03-28
2017-01-1047
A new ring pack model has been developed based on the curved beam finite element method. This paper describes the second part of this model: simulating oil transport around the ring pack system (two compression rings and one twin-land oil control ring (TLOCR)) through the ring-liner interfaces by solving the oil film thickness on the liner. The ring dynamics model in Part 1 calculates the inter-ring gas pressure and the ring dynamic twist which are used in the ring-liner lubrication model as boundary conditions. Therefore, only in-plane conformability is calculated to obtain the oil film thickness on the liner. Both global process, namely, the structural response of the rings to bore distortion and piston tilt, and local processes, namely, bridging and oil-lube interaction, are considered. The model was applied to a passenger car engine.
Journal Article

On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

2017-03-28
2017-01-0950
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications.
Journal Article

Lubricant-Derived Ash Impact on Gasoline Particulate Filter Performance

2016-04-05
2016-01-0942
The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
Journal Article

Identification of True Stress-Strain Curve of Thermoplastic Polymers under Biaxial Tension

2016-04-05
2016-01-0514
This article is concerned with identification of true stress-strain curve under biaxial tension of thermoplastic polymers. A new type of biaxial tension attachment was embedded first in a universal material test machine, which is able to transform unidirectional loading of the test machine to biaxial loading on the specimen with constant velocity. Cruciform specimen geometry was optimized via FE modeling. Three methods of calculating true stress in biaxial tension tests were compared, based on incompressibility assumption, linear elastic theory and inverse engineering method, respectively. The inverse engineering method is more appropriate for thermoplastic polymers since it considers the practical volume change of the material during biaxial tension deformation. The strategy of data processing was established to obtain biaxial tension true stress-strain curves of different thermoplastic polymers.
Technical Paper

An Experimental Study of Piston Skirt Roughness and Profiles on Piston Friction Using the Floating Liner Engine

2016-04-05
2016-01-1043
The piston skirt is an important contributor of friction in the piston assembly. This paper discusses friction contributions from various aspects of the piston skirt. A brief study of piston skirt patterns is presented, with little gains being made by patterning the piston skirt coating. Next the roughness of the piston skirt coating is analyzed, and results show that reducing piston skirt roughness can have positive effects on friction reduction. Finally, an introductory study into the profile of the piston skirt is presented, with the outcome being that friction reduction is possible by optimizing the skirt profile.
Technical Paper

Additional Findings on the Multi-Modal Demands of “Voice-Command” Interfaces

2016-04-05
2016-01-1428
This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
Technical Paper

A Framework for Robust Driver Gaze Classification

2016-04-05
2016-01-1426
The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
Technical Paper

Observed Differences in Lane Departure Warning Responses during Single-Task and Dual-Task Driving: A Secondary Analysis of Field Driving Data

2016-04-05
2016-01-1425
Advanced driver assistance systems (ADAS) are an increasingly common feature of modern vehicles. The influence of such systems on driver behavior, particularly in regards to the effects of intermittent warning systems, is sparsely studied to date. This paper examines dynamic changes in physiological and operational behavior during lane departure warnings (LDW) in two commercial automotive systems utilizing on-road data. Alerts from the systems, one using auditory and the other haptic LDWs, were monitored during highway driving conditions. LDW events were monitored during periods of single-task driving and dual-task driving. Dual-task periods consisted of the driver interacting with the vehicle’s factory infotainment system or a smartphone to perform secondary visual-manual (e.g., radio tuning, contact dialing, etc.) or auditory-vocal (e.g. destination address entry, contact dialing, etc.) tasks.
X