Refine Your Search

Topic

Author

Search Results

Technical Paper

Modeling of piston pin rotation in a large bore gas engine

2023-09-29
2023-32-0161
In an engine system, the piston pin is subjected to high loading and severe lubrication conditions, and pin seizures still occur during new engine development. A better understanding of the lubricating oil behavior and the dynamics of the piston pin could lead to cost- effective solutions to mitigate these problems. However, research in this area is still limited due to the complexity of the lubrication and the pin dynamics. In this work, a numerical model that considers structure deformation and oil cavitation was developed to investigate the lubrication and dynamics of the piston pin. The model combines multi-body dynamics and elasto-hydrodynamic lubrication. A routine was established for generating and processing compliance matrices and further optimized to reduce computation time and improve the convergence of the equations. A simple built-in wear model was used to modify the pin bore and small end profiles based on the asperity contact pressures.
Journal Article

Best Practices in Establishing Business Case for Implementing Blockchain Solution in Aerospace

2022-03-08
2022-01-0002
The aircraft asset life cycle processes are rapidly being digitalized. Many novel technologies enabled processes of recording these electronic transactions are being emerged. One such technology for recording electronic transactions securely is Blockchain, defined as distributed ledger technologies which includes enterprise blockchain. Blockchain is not widely used in the aerospace industry due to lack of technical understanding and questions about its benefits. Assessment and establishment of business case for implementing blockchain based solution is needed. The aerospace industry is very conservative when it comes to technology adoption and hence it is difficult to change legacy processes. Additionally, the industry is very fragmented. The technology is advancing at a faster rate and applies across geographies under various regulatory oversight which makes blockchain based solution implementation challenging.
Technical Paper

Modeling the Three Piece Oil Control Ring Dynamics and Oil Transport in Internal Combustion Engines

2021-04-06
2021-01-0345
Three-piece oil control rings (TPOCR) are widely used in the majority of modern gasoline engines and they are critical for lubricant regulation and friction reduction. Despite their omnipresence, the TPOCRs’ motion and sealing mechanisms are not well studied. With stricter emission standards, gasoline engines are required to maintain lower oil consumption limits, since particulate emissions are strongly correlated with lubricant oil emissions. This piqued our interest in building a numerical model coupling TPOCR dynamics and oil transport to explain the physical mechanisms. In this work, a 2D dynamics model of all three pieces of the ring is built as the main frame. Oil transport in different zones are coupled into the dynamics model. Specifically, two mass-conserved fluid sub-models predict the oil movement between rail liner interface and rail groove clearance to capture the potential oil leakage through TPOCR. The model is applied on a 2D laser induced fluorescence (2D-LIF) engine.
Journal Article

Digital Data Standards in Aircraft Asset Lifecycle: Current Status and Future Needs

2021-03-02
2021-01-0035
The aerospace ecosystem is a complex system of systems comprising of many stakeholders in exchanging technical, design, development, certification, operational, and maintenance data across the different lifecycle stages of an aircraft from concept, engineering, manufacturing, operations, and maintenance to its disposal. Many standards have been developed to standardize and improve the effectiveness, efficiency, and security of the data transfer processes in the aerospace ecosystem. There are still challenges in data transfer due to the lack of standards in certain areas and lack of awareness and implementation of some standards. G-31 standards committee of SAE International has conducted a study on the available digital data standards in aircraft asset life cycle to understand the current and future landscapes of the needed digital data standards and identify gaps. This technical paper presents the study conducted by the G-31 technical committee.
Technical Paper

A Numerical Model for Piston Pin Lubrication in Internal Combustion Engines

2020-09-15
2020-01-2228
As the piston pin works under significant mechanical load, it is susceptible to wear, seizure, and structural failure, especially in heavy duty internal combustion engines. It has been found that the friction loss associated with the pin is comparable to that of the piston, and can be reduced when the interface geometry is properly modified. However, the mechanism that leads to such friction reduction, as well as the approaches towards further improvement, remain unknown. This work develops a piston pin lubrication model capable of simulating the interaction between the pin, the piston, and the connecting rod. The model integrates dynamics, solid contact, oil transport, and lubrication theory, and applies an efficient numerical scheme with second order accuracy to solve the highly stiff equations. As a first approach, the current model assumes every component to be rigid.
Technical Paper

Reliable Processes of Simulating Liner Roughness and Its Lubrication Properties

2019-04-02
2019-01-0178
Topology of liner finish is critical to the performance of internal combustion engines. Proper liner finish simulation processes lead to efficient engine design and research. Fourier methods have been well studied to numerically generate liner topology. However, three major issues wait to be addressed to make the generation processes feasible and reliable. First, in order to simulate real plateau honed liners, approaches should be developed to calculate accurate liner geometric parameters. These parameters are served as the input of the generation algorithm. Material ratio curve, the common geometry calculation method, should be modified so that accurate root mean square of plateau height distribution could be obtained. Second, the set of geometric parameters used in generating liner finish (ISO 13565-2) is different from the set of parameters used in manufacturing industry (ISO 13565-3). Quantitative relations between these two sets should be studied.
Technical Paper

Multi-objective Optimization of a Multifunctional Structure through a MOGA and SOM based Methodology

2013-09-17
2013-01-2207
A Multi-Objective Optimization (MOO) problem concerning the thermal control problem of Multifunctional Structures (MFSs) is here addressed. In particular the use of Multi-Objective algorithms from an optimization tool and Self-Organizing Maps (SOM) is proposed for the identification of the optimal topological distribution of the heating components for a multifunctional test panel, the Advanced Bread Board (ABB). MFSs are components that conduct many functions within a single piece of hardware, shading the clearly defined boundaries that identify traditional subsystems. Generally speaking, MFSs have already proved to be a disrupting technology, especially in aeronautics and space application fields. The case study exploited in this paper refers to a demonstrator breadboard called ABB. ABB belongs to a particular subset of an extensive family of MFS, that is, of thermo-structural panels with distributed electronics and a health monitoring network.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

Automated Model Evaluation and Verification of Aircraft Components

2010-11-02
2010-01-1806
The trend of moving towards model-based design and analysis of new and upgraded aircraft platforms requires integrated component and subsystem models. To support integrated system trades and design studies, these models must satisfy modeling and performance guidelines regarding interfaces, implementation, verification, and validation. As part of the Air Force Research Laboratory's (AFRL) Integrated Vehicle and Energy Technology (INVENT) Program, standardized modeling and performance guidelines have been established and documented in the Modeling Requirement and Implementation Plan (MRIP). Although these guidelines address interfaces and suggested implementation approaches, system integration challenges remain with respect to computational stability and predicted performance over the entire operating region for a given component. This paper discusses standardized model evaluation tools aimed to address these challenges at a component/subsystem level prior to system integration.
Technical Paper

Efficient Assembly Integration and Test (EAIT) Moves Theory to Practice at a System Level to Effect Lean Outcomes on the Shop Floor

2009-11-10
2009-01-3169
This paper will describe the Efficient Assembly Integration and Test (EAIT) system level project operated as a partnership among Boeing business units, universities, and suppliers. The focus is on the successful implementation and sharing of technology solutions to develop a model based, multi-product pulsed line factory of the future. The EAIT philosophy presented in this paper focuses on a collaborative environment that is tightly woven with the Lean Initiatives at Boeing's satellite development center. The prototype is comprised of a platform that includes a wireless instrumentation system, rapid bonding materials and virtual test of guidance hardware there are examples of collaborative development in collaboration with suppliers. Wireless tools and information systems are also being developed across the Boeing Company. Virtual reality development will include university partners in the US and India.
Journal Article

Columbus Thermal Hydraulic Operations with US Payloads

2009-07-12
2009-01-2555
After launch and activation activities, the Columbus module started its operational life on February 2008 providing resources to the internal and external experiments. In March 2008 two US Payloads were successfully installed into Columbus Module: Microgravity Sciences Glovebox (MSG) and a US payload of the Express rack family, Express Rack 3, carrying the European Modular Cultivation System (EMCS) experiment. They were delivered to the European laboratory from the US laboratory and followed few months later by similar racks; Human Research Facility 1 (HRF1) and HRF2. The following paper provides an overview of US Payloads, giving their main features and experiments run inside Columbus on year 2008. Flight issues, mainly on the hydraulic side are also discussed. Engineering evaluations released to the flight control team, telemetry data, and relevant mathematical models predictions are described providing a background material for the adopted work-around solutions.
Technical Paper

An EVA Mission Planning Tool based on Metabolic Cost Optimization

2009-07-12
2009-01-2562
An extravehicular activity (EVA) path-planning and navigation tool, called the Mission Planner, has been developed to assist with pre-mission planning, scenario simulation, real-time navigation, and contingency replanning during astronaut EVAs, The Mission Planner calculates the most efficient path between user-specified waypoints. Efficiency is based on an exploration cost algorithm, which is a function of the estimated astronaut metabolic rate. Selection of waypoints and visualization of the generated path are realized within a 3D mapping interface through terrain elevation models. The Mission Planner is also capable of computing the most efficient path back home from any point along the path.
Technical Paper

Recommendations for Real-Time Decision Support Systems for Lunar and Planetary EVAs

2007-07-09
2007-01-3089
Future human space exploration includes returning to the Moon and continuing to Mars. Essential to these missions is each planetary extravehicular activity, or EVA, where astronauts and robotic agents will explore lunar and planetary surfaces. Real-time decision support systems will help these explorers in efficiently planning and re-planning under time pressure sorties. Information and functional requirements for such a system are recommended and are based on on-going human-computer collaboration research.
Technical Paper

New Demands from an Older Population: An Integrated Approach to Defining the Future of Older Driver Safety

2006-10-16
2006-21-0008
The nearly 77 million baby boomers, born between 1946 and 1964, can say that they are the automobile generation. Now turning 60 one every seven seconds, what are the new safety challenges and opportunities posed by the next generation of older adults? This paper presents a modified Haddon matrix to identify key product development, design and liability issues confronting the automobile industry and related stakeholders. The industry is now at a critical juncture to address the development of key technological innovations as well as the changing policy and liability environments being reshaped by an aging population.
Technical Paper

Mission Planning and Re-planning for Planetary Extravehicular Activities: Analysis of Excursions in a Mars-Analog Environment and Apollo Program

2006-07-17
2006-01-2297
Future planetary extravehicular activities (EVAs) will go beyond what was experienced during Apollo. As mission duration becomes longer, inevitably, the astronauts on the surface of the Moon and Mars will actively plan and re-plan their own sorties. To design robust decision support aids for these activities, we have to first characterize all the different types of excursions that are possible. This paper describes a framework that organizes parameters and constraints that define a single planetary EVA. We arrived at this framework through case studies: by reviewing the EVA lessons learned during Apollo, conducting an observational study of excursions in a Mars-analog environment, and applying part of the framework to a prototype path planner for human planetary exploration.
Technical Paper

The National Space Biomedical Research Institute Education and Public Outreach Program: Engaging the Public and Inspiring the Next Generation of Space Explorers

2005-07-11
2005-01-3105
The National Space Biomedical Research Institute (NSBRI), established in 1997, is a twelve-university consortium dedicated to research that will impact mankind's next exploratory steps. The NSBRI's Education and Public Outreach Program (EPOP), is supporting NASA's education mission to, “Inspire the next generations…as only NASA can,” through a comprehensive Kindergarten through post-doctoral education program. The goals of the EPOP are to: communicate space exploration biology to schools; support undergraduate and graduate space-based courses and degrees; fund postdoctoral fellows to pursue space life sciences research; and engage national and international audiences to promote understanding of how space exploration benefits people on Earth. NSBRI EPOP presents its accomplishments as an educational strategy for supporting science education reform, workforce development, and public outreach.
Technical Paper

Columbus to Human Research Facility Hydraulic Compatibility Test: Analysis and Results

2005-07-11
2005-01-3119
ESA and NASA agencies agreed to run an interface compatibility test at the EADS facility between the Columbus flight module and a duplicate ground unit of a currently on-orbit US International Standard Payload Rack, the Human Research Facility (HRF) Flight Prototype Rack (FPR). The purpose of the test was to demonstrate the capability to run US payloads inside the European ISS module Columbus. One of the critical aspects to be verified to ensure suitable operations of the two systems was the combined performance of the hydraulic controls resident in the HRF and Columbus coolant loops. A hydraulic model of the HRF FPR was developed and combined with the Columbus Active Thermal Control System (ATCS) model. Several coupled thermal-hydraulic test cases were then performed, preceded by mathematical analysis, required to predict safe test conditions and to optimize the Columbus valve configurations.
Technical Paper

A Robust Method of Countersink Inspection Using Machine Vision

2004-09-21
2004-01-2820
An automated system drills the outer moldline holes on a military aircraft wing. Currently, the operator manually checks countersink diameter every ten holes as a process quality check. The manual method of countersink inspection (using a countersink gauge with a dial readout) is prone to errors both in measurement and transcription, and is time consuming since the operator must stop the automated equipment before measuring the hole. Machine vision provides a fast, non-contact method for measuring countersink diameter, however, data from machine vision systems is frequently corrupted by non-gaussian noise which causes traditional model fitting methods, such as least squares, to fail miserably. We present a solution for circle measurement using a statistically robust fitting technique that does an exceptional job of identifying the countersink even in the presence of large amounts of structured and non-structured noise such as tear-out, scratches, surface defects, salt-and-pepper, etc.
Technical Paper

Future Directions Relative to NDE of Composite Structures

2004-09-21
2004-01-2817
One of the key elements of increasing the affordability of major weapons systems is reducing costs associated with manufacturing. Nondestructive evaluation (NDE) is a critical element of the manufacturing process and one that cannot be compromised. A key goal associated with NDE research and development is to help reduce the cost associated with quality assurance. In relation to composite structures, this is being approached from several directions, two of which will be discussed. The approach most frequently used for inspection of composite parts is to pull the parts out of the manufacturing cells and route them to a centralized quality assurance area for inspection. This approach leads to accumulation of non-recurring costs for tooling/fixturing to support the inspection and significant additions to production flow time. An alternative would be to develop nondestructive evaluation processes that can be performed in the manufacturing cells.
Technical Paper

Bio-Suit Development: Viable Options for Mechanical Counter Pressure

2004-07-19
2004-01-2294
Human explorers of planetary surfaces would benefit greatly from a spacesuit design that facilitates locomotion. To aid in the development of such an extravehicular activity suit, a design effort incorporating the concept of mechanical counter pressure (MCP) was undertaken. Three-dimensional laser scanning of the human body was used to identify the main effects of knee flexion angle on the size and shape of the leg. This laser scanning quantified the changes in shape that must be supported by an MCP garment and the tension that must be developed to produce even MCP. Evaluation of a hybrid-MCP concept using inextensible materials demonstrated strong agreement between experimental data and a mathematical model with rigid cylinder geometry. Testing of a form-fitting garment on the right lower leg of a subject demonstrated successful pressure production. Further research is required to evaluate how evenly pressure can be distributed using the hybrid-MCP concept.
X