Refine Your Search

Topic

Author

Search Results

Technical Paper

Vaporization and Turbulence Characteristics of High Pressure Gasoline Sprays Impinging on a Wall

2019-12-19
2019-01-2247
To get a better understanding of the characteristics of the high pressure gasoline sprays impinging on a wall, a fundamental study was conducted in a high-temperature high-pressure constant volume vessel under the simulated engine conditions of in-cylinder pressures, temperatures, and wall temperatures. The injection pressure was varied from 20 to 120 MPa. The spray tip penetration, vapor mass distribution, and vaporization rate were quantitatively measured with the laser absorption-scattering (LAS) technique. The velocity fields of the wall-impinging sprays under vaporizing conditions were measured with the particle image velocimetry (PIV) technique using silicone oil droplets as tracers. The effects of injection pressure and spray/wall interactions on spray characteristics were investigated. The results showed that the increased injection pressure improved penetration, vaporization, and turbulence of the sprays.
Technical Paper

Development of Fuel Sloshing Evaluation Technique upon Crash Using Fluid-Structure Interaction Simulation

2019-04-02
2019-01-0941
In the development of fuel tank systems, it is important to maintain fuel system integrity even if a car accident occurs. When a fuel tank undergoes a sudden change in velocity, the fuel starts to move and deforms the tank walls and baffle plates, and then the deformation changes the flow pattern of fuel. Because interaction of fuel with tank components is the main cause of fuel spillage upon crash, it is important to predict complex fluid-structure interaction responses at an early stage of crash safety development with a multiphysics simulation. Development of the multiphysics simulation technique was conducted stepwise by examining “fluid motion” and “tank deformation.” First, a sled test of a rigid-wall tank with observation window was conducted to evaluate the fluid motion inside the tank. A numerical model was developed based on an ALE (Arbitrary Lagrangian Eulerian) algorithm for the fluid and a Lagrangian algorithm for the structure.
Technical Paper

Aerodynamics Evaluation of Road Vehicles in Dynamic Maneuvering

2016-04-05
2016-01-1618
A road vehicle’s cornering motion is known to be a compound motion composed mainly of forward, sideslip and yaw motions. But little is known about the aerodynamics of cornering because little study has been conducted in this field. By clarifying and understanding a vehicle’s aerodynamic characteristics during cornering, a vehicle’s maneuvering stability during high-speed driving can be aerodynamically improved. Therefore, in this study, the aerodynamic characteristics of a vehicle’s cornering motion, i.e. the compound motion of forward, sideslip and yaw motions, were investigated. We also considered proposing an aerodynamics evaluation method for vehicles in dynamic maneuvering. Firstly, we decomposed cornering motion into yaw and sideslip motions. Then, we assumed that the aerodynamic side force and yaw moment of a cornering motion could be expressed by superposing linear expressions of yaw motion parameters and those of sideslip motion parameters, respectively.
Technical Paper

Characteristics of Nozzle Internal Flow and Near-Field Spray of Multi-Hole Injectors for Diesel Engines

2015-09-01
2015-01-1920
The combustion process, emission formation and the resulting engine performance in a diesel engine are well known to be governed mainly by spray behaviors and the consequent mixture formation quality. One of the most important factors that affect the spray development is the nozzle configuration. Originally, single-hole diesel injector is usually applied in fundamental research to provide insights into the spray characteristics. However, the spray emerging from a realistic multi-hole injector approaches the practical engine operation situation better. Meanwhile, previous research has shown that the reduced nozzle hole diameter is effective for preparing more uniform mixture. In the current paper, a study about the effects of nozzle configuration and hole diameter on the internal flow and spray properties was conducted in conjunction with a series of experimental and computational methods.
Technical Paper

A Study on Innovation of Material Recycles: World's First Implementation to Use ELV Bumper Materials for New Car Bumpers

2013-04-08
2013-01-0831
The purpose of this study is to define requirements for technological and business success in the world's first implementation of Reverse-Supply-Chain, in which bumper materials of end-of-life vehicles (ELV) are recycled for use as ingredients in new bumper materials. In Japan, ELVs are recovered following to the government regulation. About 20% (700,000 ton) of such collected ELVs are automotive shredder residues (ASR), most of which are burnt as fuel or used as landfill trash. ASRs are mainly plastics, which are largely used as materials of bumpers. The reverse-supply-chain was started as a small business by a collaboration between the car manufacture (Mazda), dismantler, and resource-recycling business operator, and enhanced by the development of easy-to-recycle bumpers, technologies of paint removal from crushed bumpers and sorting-out, a material quality control method, and improvement in transportation efficiency.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

A Study of Compatibility and Vehicle Front Stiffness Based on Real-World Accidents

2007-08-05
2007-01-3719
The aim of this research was to find vehicle characteristics including stiffness that is effective for compatibility performance. Compatibility is said to be affected by three factors: vehicle mass, geometry and stiffness (1, 2). Of these factors, stiffness has more flexibility at the design stage than vehicle mass and geometry which are limited by the vehicle application. However, the stiffness is assumed to have a conflict issue between the self-protection and the partner-protection (3). In this research, it was analyzed comprehensively how some defined factors such as stiffness, mass, crash stroke and other vehicle characteristics indices relate to each occupant injury rate of the case and its partner vehicle in the real-world accidents. Both “front-to-front” and “front-to-side” crash occupants were covered.
Technical Paper

Experimental Modal Methodologies for Quantification of Body/Chassis Response to Brake Torque Variation

2007-05-15
2007-01-2343
Brake torque variation is a source of objectionable NVH body/chassis response. Such input commonly results from brake disk thickness variation. The NVH dynamic characteristics of a vehicle can be assessed and quantified through experimental modal testing for determination of mode resonance frequency, damping property, and shape. Standard full vehicle modal testing typically utilizes a random input excitation into the vehicle frame or underbody structure. An alternative methodology was sought to quantify and predict body/chassis sensitivity to brake torque variation. This paper presents a review of experimental modal test methodologies investigated for the reproduction of vehicle response to brake torque variation in a static laboratory environment. Brake caliper adapter random and sine sweep excitation input as well as body sine sweep excitation in tandem with an intentionally locked brake will be detailed.
Technical Paper

Application of the Modal Compliance Technique to a Vehicle Body in White

2007-05-15
2007-01-2355
This paper describes the application of the modal compliance method to a complex structure such as a vehicle body in white, and the extension of the method from normal modes to the complex modes of a complete vehicle. In addition to the usual bending and torsion calculations, the paper also describes the application of the method to less usual tests such as second torsion, match-boxing and breathing. We also show how the method can be used to investigate the distribution of compliance throughout the structure.
Technical Paper

Sensitivity Analysis of Powertrain Cooling System Performance

2007-04-16
2007-01-0598
This paper identifies the difference in powertrain cooling system content levels using a nominal and a +3 Standard deviation maximum temperature design approach. Variation simulation analysis tools are used along with a 1-D cooling system performance model to predict resulting temperature distribution for different combinations of input variable populations. The analysis will show differential in powertrain cooling system content, mass, and impact to fuel economy for a nominal vs. +3 sigma design approach.
Technical Paper

Simulation Process to Investigate Suspension Sensitivity to Brake Judder

2007-04-16
2007-01-0590
Brake judder, which is a low frequency excitation of the suspension and thus, the body structure during low-G braking, is mainly felt at the steering wheel and throughout the vehicle structure. Brake judder is a problem that costs manufacturers millions of dollars in warranty cost and undesirable trade offs. The magnitude of judder response depends not only on the brake torque variation, but also on the suspension design character-istics. This paper discusses the judder simulation process using ADAMS software to investigate the suspension design sensitivity to the first order brake judder performance. The paper recommends “tuning knobs” to suspension designers and vehicle development engineers to resolve issues in the design and development stages. Various suspension design varia-bles including geometry and compliances as well as brake related characteristics were investigated.
Technical Paper

Optimization of Head Impact Waveform to Minimize HIC

2007-04-16
2007-01-0759
To mitigate head impact injuries of vehicle occupants in impact accidents, the FMVSS 201 requires padding of vehicle interior so that under the free-moving-head-form impact, the head injury criterion (HIC) is below the limit. More recently, pedestrian head impact on the vehicle bonnet has been a subject being studied and regulated as requirements to the automobile manufacturers. Over the years, the square wave has been considered as the best waveform for head impacts, although it is impractical to achieve. This paper revisits the head impact topic and challenges the optimality of aiming at the square waveform. It studies several different simple waveforms, with the objective to achieve minimal HIC or minimal crush space required in head-form impacts. With that it is found that many other waveforms can be more efficient and more practical than the square wave, especially for the pedestrian impact.
Technical Paper

Finite Element Analyses of Fastened Joints in Automotive Engineering

2007-04-16
2007-01-1204
In this paper, the methodology of finite element analyses of fastened joints in automotive engineering applications is described in detail. The analyses cover a) the possibility of slippage of the spacer with the design/actual clamp load, and under critical operating loads; b) the strength of the fastener and other structural components comprising the joint under the maximum clamp load. The types of fastened joints, the mechanical characteristics of the joints, the relationship of clamp load to torque, the design and maximum clamp loads, the finite element model meshing and assembly, the non-linearity due to contact, the determination of gaps and stack-up, and the nonlinear material simulation and loading procedures are described. An analysis example of a fastened joint on chassis is also illustrated.
Technical Paper

Advancing the State of Strong Hybrid Technology

2006-10-16
2006-21-0058
As the hybrid automotive market becomes quickly saturated with highly competitive products and vehicles, auto manufacturers struggle with business models and the combination of current manufacturing with next generation development. The hybrid development cooperation amongst General Motors, DaimlerChrysler, and BMW offers a new business model that promotes the advancement of the state of strong hybrid technology while maintaining the strong global leadership and competition.
Technical Paper

A Grammatical Evolution Approach to System Identification of Laser Lap Welding

2006-04-03
2006-01-1614
Laser lap welding quality is a non-linear response based on a host of categorical and numeric material and process variables. This paper describes a Grammatical Evolution approach to the structure identification of the laser lap welding process and compares its performance with linear regression and a neuro-fuzzy inference system.
Technical Paper

Suspension Tuning Parameters Affecting Impact Harshness Performance Evaluation

2006-04-03
2006-01-0991
In this paper, a comprehensive evaluation index for impact harshness (IH) is proposed. A mid-sized uni-body SUV is selected for this study, with the acceleration responses at the various vehicle body locations as objective functions. A sensitivity study is conducted using an ADAMS full vehicle model with flexible body structure representation over an IH event to analyze the influence of various suspension tuning parameters, including suspension springs, shock damping, steer gear ratio, unsprung mass, track-width, and bushing stiffness.
Technical Paper

Study on Simplified Finite Element Simulation Approaches of Fastened Joints

2006-04-03
2006-01-1268
In this paper, mechanism of fastened joints is described; numerical analyses and testing calibrations are conducted for the possible simplified finite element simulation approaches of the joints; and the best simplified approach is recommended. The approaches cover variations of element types and different ways that the joints are connected. The element types include rigid elements, deformable bar elements, solid elements, shell elements and combinations of these element types. The different ways that the joints are connected include connections of one row of nodes, two row of nodes and alternate nodes in the first and second rows. These simplified simulation approaches are numerically evaluated on a joint of two plates connected by a single fastener. The fundamental loads, bending with shear, shear and tension are applied in the numerical analyses. A detailed model including contact and clamp load are analyzed simultaneously to provide “accurate results”.
Technical Paper

Reliability and Robust Design of Automotive Thermal Systems - A Federated Approach

2006-04-03
2006-01-1576
Today automotive thermal systems development is a joint effort between an OEM and its suppliers. This paper presents a pilot program showing how OEMs and suppliers can jointly develop a reliable and robust thermal system using CAE tools over the internet. Federated Intelligent Product Environment (FIPER) has been used to establish B2B communication between OEMs and suppliers. Suppliers remotely run thermal systems computer models at the OEM site using the FIPER B2B feature.
Technical Paper

Model Based Development and Auto Testing: A Robust Approach for Reliable Automotive Software Development

2006-04-03
2006-01-1420
Automotive electronics and software is getting complex day by day. More and more features and functions are offered and supported by software in place of hardware. Communication is carried out on the CAN bus instead of hard wired circuits. This architectural transition facilitates lots of flexibility, agility and economy in development. However, it introduces risk of unexpected failures due to insufficient testing and million of possible combinations, which can be created by users during the life time of a product. Model based development supports an effective way of handling these complexities during simulation and also provide oracle for its validation. Based on priorities and type of applications, test vectors can be auto generated and can be used for formal verification of the models. These auto-generated test vectors are valuable assets in testing and can be effectively reused for target hardware (ECU) verification.
Technical Paper

The USAMP Magnesium Powertrain Cast Components Project

2006-04-03
2006-01-0522
Over the past five years, the US Automotive Materials Partnership (USAMP) has brought together representatives from DaimlerChrysler, General Motors, Ford Motor Company and over 40 other participant companies from the Mg casting industry to create and test a low-cost, Mg-alloy engine that would achieve a 15 - 20 % Mg component weight savings with no compromise in performance or durability. The block, oil pan, and front cover were redesigned to take advantage of the properties of both high-pressure die cast (HPDC) and sand cast Mg creep- resistant alloys. This paper describes the alloy selection process and the casting and testing of these new Mg-variant components. This paper will also examine the lessons learned and implications of this pre-competitive technology for future applications.
X