Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Characteristics of Formaldehyde (CH2O) Formation in Dimethyl Ether (DME) Spray Combustion Using PLIF Imaging

2016-04-05
2016-01-0864
Recognition of Dimethyl Ether (DME) as an alternative fuel has been growing recently due to its fast evaporation and ignition in application of compression-ignition engine. Most importantly, combustion of DME produces almost no particulate matter (PM). The current study provides a further understanding of the combustion process in DME reacting spray via experiment done in a constant volume combustion chamber. Formaldehyde (CH2O), an important intermediate species in hydrocarbon combustion, has received much attention in research due to its unique contribution in chemical pathway that leads to the combustion and emission of fuels. Studies in other literature considered CH2O as a marker for UHC species since it is formed prior to diffusion flame. In this study, the formation of CH2O was highlighted both temporally and spatially through planar laser induced fluorescence (PLIF) imaging at wavelength of 355-nm of an Nd:YAG laser at various time after start of injection (ASOI).
Technical Paper

Innovative Exergy-Based Combustion Phasing Control of IC Engines

2016-04-05
2016-01-0815
Exergy or availability is the potential of a system to do work. In this paper, an innovative exergy-based control approach is presented for Internal Combustion Engines (ICEs). An exergy model is developed for a Homogeneous Charge Compression Ignition (HCCI) engine. The exergy model is based on quantification of the Second Law of Thermodynamic (SLT) and irreversibilities which are not identified in commonly used First Law of Thermodynamics (FLT) analysis. An experimental data set for 175 different ICE operating conditions is used to construct the SLT efficiency maps. Depending on the application, two different SLT efficiency maps are generated including the applications in which work is the desired output, and the applications where Combined Power and Exhaust Exergy (CPEX) is the desired output. The sources of irreversibility and exergy loss are identified for a single cylinder Ricardo HCCI engine.
Technical Paper

Friction between Piston and Cylinder of an IC Engine: a Review

2011-04-12
2011-01-1405
Engine friction serves as an important domain for study and research in the field of internal combustion engines. Research shows that friction between the piston and cylinder accounts for almost 20% of the losses in an engine and therefore any effort to minimize friction losses will have an immediate impact on engine efficiency and thus vehicle fuel economy. The two most common methods to experimentally measure engine friction are the floating liner method and the instantaneous indicated mean effective pressure (IMEP) method. This paper provides a detailed review of the IMEP method, presents major findings, and discusses sources of error. Although the instantaneous IMEP method is relatively new compared to the floating liner method, it has been used by many scientists and engineers for calculating piston ring assembly friction with consistent results.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

Relating Integral Length Scale to Turbulent Time Scale and Comparing k-ε and RNG k-ε Turbulence Models in Diesel Combustion Simulation

2002-03-04
2002-01-1117
A modified version of the Laminar and Turbulent Characteristic Time combustion model and the Hiroyasu-Magnussen soot model have been implemented in the flow solver Star-CD. Combustion simulations of three DI diesel engines, utilizing the standard k-ε turbulence model and a modified version of the RNG k-ε turbulence model, have been performed and evaluated with respect to combustion performance and emissions. Adjustments of the turbulent characteristic combustion time coefficient, which were necessary to match the experimental cylinder peak pressures of the different engines, have been justified in terms of non-equilibrium turbulence considerations. The results confirm the existence of a correlation between the integral length scale and the turbulent time scale. This correlation can be used to predict the combustion time scale in different engines.
Technical Paper

Exhaust Flow Separation in a Two Stroke Engine

1996-02-01
960744
The two stroke direct injected gasoline engine is in part characterized by low temperature exhaust flow, particularly at light loads, due to the fresh air scavenging of the combustion chamber during the exhaust process. This study investigated the possibility of separating the exhaust flow into two regimes: 1) high temperature flow of the combustion products, and 2) low temperature flow from the fresh air scavenging process. Separation of the exhaust flow was accomplished by a mechanical device placed in the exhaust stream. In this way, emissions from the exhaust could be handled by two different catalysts and/or processes, each optimized for different temperature ranges and flow compositions. The first portion of this study involved validation of a computer model, using experimental data from a single cylinder engine with a stationary exhaust port and splitter.
Technical Paper

Fuel Film Dynamics in the Intake Port of a Fuel Injected Engine

1994-03-01
940446
Up to 80 percent of the total hydrocarbons emitted during the EPA Federal emissions test are produced in the first five minutes of this procedure. It has been theorized that this is in part due to wall wetting of the intake port and cylinder. This study measures the behavior of the fuel film thickness in the intake port during cold starting, steady state and transient operation. Three injector spray patterns with varying droplet sizes were utilized for the tests. The fuel film thickness in the intake port of a Ford 1.9L engine was measured using optical sensors. It was found that the spray pattern and droplet size affected the port wall wetting characteristics.
Technical Paper

A Photographic Study of the Combustion of Low Cetane Fuels in a Diesel Engine Aided with Spark Assist

1986-03-01
860066
An experimental investigation of the ignition and combustion characteristics of two low cetane fuels in a spark assisted Diesel engine is described. A three cylinder Diesel engine was modified for single cylinder operation and fitted with a spark plug located in the periphery of the spray plume. Optical observations of ignition and combustion were obtained with high speed photography. Optical access was provided by a quartz piston crown and extended head arrangement. The low cetane fuels, a light end, low viscosity fuel and a heavy end, high viscosity fuel which were blended to bracket No. 2 Diesel fuel on the distillation curve, demonstrated extended operation in the modified Diesel engine. Qualitative and quantitative experimental observations of ignition delay, pressure rise, heat release, spray penetration and geometery were compared and evaluated against theoretical predictions.
Technical Paper

An Infrared Technique for Measuring Cycle-Resolved Transient Combustion-Chamber Surface Temperatures in a Fired Engine

1986-03-01
860240
An optical technique for measuring transient combustion chamber surface temperatures in a fired engine has been developed. The spectral region from 3.6 to 4.0 microns was found to be suitable for making optical measurements through the methane-air flame. The experimental apparatus was capable of making simultaneous time-resolved measurements of infrared gas absorption, gas emission and surface radiation during a single engine cycle. The effects of engine operating conditions on gas absorption and gas emission were investigated. Measurements of “simulated” deposits at temperatures ranging from 569 K to 944 K indicated that the technique was accurate within 7 K at the higher temperatures.
X