Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Compound Electroformed Metal Nozzles for High Pressure Gasoline Injection

The objective of this research was to evaluate the effects that higher fluid injection pressures and nozzle geometry have on compound fuel injector nozzle performance. Higher pressures are shown to significantly reduce droplet size, increase the discharge coefficient and reduce the overall size of a nozzle spray. It is also shown that the geometry has a significant effect on nozzle performance, and it can be manipulated to give a desired spray shape.
Technical Paper

Computational Design of Experiments for Compound Fuel Injector Nozzles

A computational design of experiments was constructed to analyze two basic nozzle designs. Several geometric features of the nozzles such as cavity height, exit orifice area, turbulence generator area and exit orifice position in addition to the pressure differential across the injector were used in a 2k factorial design study. Performance characteristic which were analyzed in an analysis of variance study included the discharge coefficient. atomization efficiency and predicted spray pattern. The computational design of experiments revealed which of the studied parameters had the greatest influence on a given nozzle performance characteristic. These results were compared to a similar investigation which was later performed experimentally from which similar conclusions were drawn.
Technical Paper

Compound Port Fuel Injector Nozzle Droplet Sizes and Spray Patterns

The goal of this research was to determine an empirical method of relating the droplet sizes and the spray patterns to the parameters and the geometries of the compound nozzles. Two different types of compound nozzles were studied, the compound silicon micro machined nozzle and the compound metal disk nozzle. Several different orifice geometries of each nozzle type were examined. The injector components upstream of the compound nozzle of two different types of injectors were also studied. A nondimensional characterization of the droplet sizes and the mass flow rates was proposed. The results of this study show that there exists optimum geometric features that will produce sprays with the minimum steady state and dynamic Sauter mean diameter. The spray of a compound nozzle can be characterized by the atomization efficiency and the discharge coefficient. Nozzle testing results show that many flow characteristics are developed in the compound nozzle.
Technical Paper

Pneumatic Atomization in an Annular Flow Nozzle

A simple geometry pneumatic atomizer which could be used on internal combustion engine was tested with water as the working fluid. The pneumatic atomizer consists of a cylindrical chamber with an orifice plate at the outlet end. Liquid flows down the chamber walls and onto the nozzle orifice plate as a film. Air flows down the center of the chamber. The interaction of the air and water, which occurs at the orifice, atomizes the water. Large droplets form near the nozzle orifice and break up as they go down stream. Variations in the droplet size occurred in the spray. When geometry and flow rates were varied, changes which decreased the water film thickness or increased the air velocity at the nozzle orifice yielded smaller droplets in the spray. Droplet size data was measured by Malvern Laser Particle Sizer.