Refine Your Search

Topic

Author

Search Results

Technical Paper

A Keynote on Future Combustion Engines

2001-03-05
2001-01-0248
A characteristic mechanism of in-cylinder combustion is “time-domain mixing” which mixes up unburned gas, products in the different stages of combustion process, and burned gas, by “eddy”, a flow component with its scales of several to 10 mm. It seems to play a role in completing the combustion. Now that direct injection is a central engine technology, a keyword to combustion control is “freedom of mixing”, that is, no restriction on mixture formation, realized by direct injection. Various kinds of combustion control technologies utilizing it, have been presented. After combustion control for a premixed leanburn gasoline engine, and a direct injection gasoline engine, was achieved by turbulence control, and mixing control, respectively, the next target of combustion control will be ignition control. It will be possible, by controlling some boundary condition on combustion and fuel chemistry. Time-domain mixing and freedom of mixing will support it.
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

2001-03-05
2001-01-1298
NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
Technical Paper

Development of High Performance Heavy-Duty Diesel Engine Oil to Extend Oil Drain Intervals: 5W30 Fully Synthetic Oil Containing MoDTC

2000-06-19
2000-01-1992
In this study, the oxidation stability, soot dispersancy, antiwear performance, and friction-reducing capability of friction modifiers (FMs) were evaluated, and an SAE 5W-30 fully synthetic oil with MoDTC type FMs was developed for heavy-duty diesel engines. In several engine tests, it was confirmed that the developed oil can double the oil drain interval in comparison with API CD SAE 30, even when EGR is applied, and improves the fuel efficiency.
Technical Paper

Development of thermoplastic elastomeric vacuum hose for engine control

2000-06-12
2000-05-0150
Vulcanized rubber hoses are difficult to recycle and have a complicated manufacturing process. Recently, we have developed the vacuum hose for engine control out of thermoplastic elastomers. As a result of this development, scrap material from the manufacturing process can be recycled and, in addition, about a 30 percent weight reduction and a 20 percent cost reduction are achievable by virtue of the lower specific gravity and by the more simplified manufacturing process. In order to assess the feasibility of using thermoplastic elastomers for vacuum hoses, we developed a heat aging simulation test method. This was achieved by first investigating the actual vehicle environmental conditions of currently used vacuum hoses by retrieving and examining these hoses from used vehicles. We then extrapolated what the condition of such hoses would be after being subjected to heat aging for 200,000 km of service in an actual vehicle, and applied this calculation to our newly developed hoses.
Technical Paper

Computational design of commercial vehicle for reconciling aerodynamics and engine cooling performance

2000-06-12
2000-05-0344
As the global environmental protection becomes the world consensus recently, the regulations of the fuel consumption and the exhaust gas have large effects on the performance and the fundamental structure of commercial vehicles. Especially the technology concerning "fluid" and "heat" has a close relationship with those issues. Owing to above circumstances, commercial vehicles such as large trucks and buses are forced to be designed near the limit of allowance. Furthermore, a rapid design is another requirement. However, though significant number of variations, i.e., cab configuration, wheel base, rear body configuration, engine specification, etc., are prepared, it is impossible to improve the performance of all those combinations by experiments which cost a lot. Accordingly, the quantitative prediction using computer will become indispensable at the beginning term of new car development.
Technical Paper

Application to Body Parts of High-Strength Steel Sheet Containing Large Volume Fraction of Retained Austenite

1998-02-23
980954
Several different steel sheets were tested for energy absorption, using hat square columns and dynamic crash testing. Results indicate that steel sheets containing large volume fraction of retained austenite have relatively high energy absorption. The relationship between retained austenite and energy absorption was analyzed. These special steel sheets have already been successfully used for production body parts, such a front-side-member, without difficulties arising in volume production.
Technical Paper

Development of Austempered Ductile Iron Timing Gears

1997-11-17
973253
Austempered ductile iron (ADI) is a material having excellent mechanical properties and damping capacity. However practical mass production of ADI gears has not been possible due to ADI's poor machinability and distortion during the austempering heat treatment. With a new process method of carrying out hobbing before austempering when the material is in its soft condition, then austempering it and lastly, conducting the shave finishing process, we have diminished the above defects and developed practical ADI gears. These new gears generate less noise than ordinary nitrocarburized steel gears and are superior in pitting resistance.
Technical Paper

Development of Damping SMC and Its Application as Material for a Rockercover

1996-02-01
960146
When replacing a metal engine part with plastic, it is necessary to regard vibration damping as one of the important factors in terms of noise reduction as well as strength and heat resistance as being characteristics of the material. Plastics are far better for vibration damping than steel or aluminum, but this property is reduced by the addition of glassfiber-reinforced or high heat-resisting resins. We have taken notice of SMC (Sheet Molding Compound) which has the excellent strength and heat resistance properties and studied it in order to increase its vibration damping property. Since organic polymers show the peak value for vibration damping performance in the vicinity of the glass transition temperature (Tg), we studied a method to shift the Tg near the operating temperature region in order to improve the vibration damping property.
Technical Paper

Development of Hard Sintered Tappet and New Testing Method

1995-02-01
950389
We have developed a tappet with a cam lobe contacting tip made of a hard sintered material whose base material is cobalt, which adheres less to the steel of camshafts, and which also contains fine particles of tungsten carbide and chrome carbide. We have established a new evaluation method to access wear resistance performance of the tappet. It enables us to measure directly the friction force generated between the cam lobe and tappet and to evaluate anti-scuffing performance with high accuracy because we can clarify the time, load and cam angle at which scuffing occures.
Technical Paper

Shape Study for a Low-Air Resistance Air Deflector - The Second Report

1995-02-01
950633
We reported, in our first report1), the study of shapes of air deflectors that have strong yawing angle characteristics for the air resistance encountered when vehicles are running at high speed, taking into account the ambient wind. However, it is rarely the case that the optimum shape of air deflector, which was obtained and reported in our first report, is directly adopted for practical use. This paper reports the results of measurement tests on how the air resistance increases (worsens) when an air deflector is mounted on the cab of a vehicle: in the case when the air deflector was slightly changed on the same vehicle; or when the parameters of the vehicle (the height of the rear body) were changed for the same air deflector. We obtained the following results: Considerations and adjustments are required not to allow flows passing over upper and side surfaces of the air deflector to hit the front surface of the rear body.
Technical Paper

A Method of Predicting Dent Resistance of Automobile Body Panels

1995-02-01
950574
Optimizing the design of automobile outer panels for weight reductions requires a consideration of stiffness and dent resistance. This paper presents a finite element analysis method for predicting the dent resistance of automobile body panels. The method is based on elastoplasticity analysis and nonlinear contact analysis. The analysis shows that dent resistance is greatly influenced not only by the stress-strain curve of the formed panel but also by the residual stress in the panel. An increase in yield stress improves dent resistance. The computed results obtained with this method compare favorably with experimental data, thereby validating this approach.
Technical Paper

The Aerodynamic Development of a Small Specialty Car

1994-03-01
940325
Aerodynamic drag reduction is one of the most important aspects of enhancing overall vehicle performance. Many car manufacturers have been working to establish drag reduction techniques. This paper describes the development process of a new small speciality car which achieved coefficient of drag(CD) of 0.25. A description of the test facilities and the systems used for developing the aerodynamic aspect of the car are also introduced briefly.
Technical Paper

Development of Anti-Corrosion Steel Sheet Containing Copper for Automobile Body Parts

1994-03-01
940538
An investigation of anti-corrosion steel sheets (non-galvanized) which contain copper for automobile body parts has been conducted. Copper additives accelerate the formation of amorphous substrates. These substrates decrease the rate of corrosion. In order to retain the steel's formability and weldability, the contents of the alloying elements have been optimized. As a result, this newly developed steel sheet can be used for many different applications such as door sashes and door panels of mass produced cars. This paper describes the key properties of the newly developed steel sheet and additionally the mechanism of corrosion prevention, weldability, formability, and so on.
Technical Paper

Effects of Shot Peening and Grinding on Gear Strength

1994-03-01
940729
In recent year, higher strength for truck and bus transmission gear has become necessary. For the transmission gears, carburized gears have generally been used. We have examined the effects of shot peening and grinding using a CBN grindstone on the pitting strength and the bending fatigue strength of a carburized gear, and further evaluated a material which reduces the structual anomalies produced during carburization. As a result, it has been found that shot peening or CBN grinding is more effective for improving both pitting strength and bending fatigue strength than improving the material composition. Therefore, it is evident that residual compressive stress caused by shot peening or CBN grinding suppresses the propagation of cracks.
Technical Paper

A Diesel Oxidation Catalyst for Exhaust Emissions Reduction

1993-11-01
932958
The authors used a mass spectrometer to determine an SOF reduction mechanism of a diesel oxidation catalyst. The results indicate that SOF reduction lies in the catalytic conversion of high molecular organic matter to low molecular organic matter. And unregulated emissions are also reduced through this conversion. It is also found that the SOF reduction performance is highly dependent up on the condition of the wash coat. There is some limitation to improving diesel oxidation catalyst performance because of the sulfur content found in diesel fuel. Finally, the authors have determined what we think are the specifications of the presently best catalytic converter.
Technical Paper

Design and Testing of Ovate Wire Helical Springs

1993-10-01
932891
This paper describes the results of the study and research on ovate wire helical springs which have been jointly conducted by the members of the Japan Society for Spring Research consisting of the engineers from material suppliers, wire and spring producers and automotive manufacturers as well as researchers at Japanese universities. Attention is focused particularly on two types of wire cross sections, typical elliptical shape and Fuchs' egg-shape. Stresses on these two cross sections were analyzed by numerical calculations within the range of practical specification, and then the results have been compared with those of round wire spring. As a result, it has been found that the elliptical wire spring is superior to Fuchs- egg-shaped one for general application. Simple designing methods for the both types of wire helical springs have been developed based on the findings from the stress analysis.
Technical Paper

Development of a New Torsional Rubber Damper for Diesel Engines

1993-05-01
931308
It is well-known that double-mass torsional rubber dampers which have two masses and springs in parallel are effective for controlling torsional vibration characteristics over a wide range of engine speed. On the occasion of reliability estimation of the rubber dampers, it is important to consider generation of heat in the rubber due to torsional vibration. By predicting generation of heat at the designing stage, optimum design of the torsional rubber dampers can be achieved. By development and application of this prediction method, a new type double-mass damper was developed. It provided higher vibration control characteristics and reliability than conventional viscous dampers, and also it provided advantages in terms of noise, productivity and weight.
Technical Paper

Development of the Stainless Cast-Steel Exhaust Manifold

1993-03-01
930621
At Mitsubishi Motors, a thin-walled exhaust manifold, made of stainless cast-steel, has been developed with the aim of achieving higher heat-resisting reliability as well as weight reduction. The new exhaust manifold is made of ferritic stainless cast-steel, employing an advanced vacuum casting (CLAS). Its geometry was designed using finite element analysis and its durability was confirmed by testing both on various test devices and on a vehicle. The exhaust manifolds has been adopted on a production engine model and has proven the following advantages over a conventional cast-iron ones; excellent heat resistance. weight reduction of over 20%. possible exhaust emission reduction as a result of lower heat-capacity of the exhaust manifold.
Technical Paper

Engine Weight Reduction Using Alternative Light Materials

1992-09-01
922090
This paper presents several methods for reducing engine weight primarily through substitution with light-weight materials. The efficiency and performance of the engine were reviewed using a light-weight experimental engine (hereinafter called “weight-reduced engine”) constructed by the authors in order to investigate the possibility of practical use of the proposed weight reduction measures. The weight-reduced engine is based on an in-line 4-cylinder, 2.0 liter, gasoline engine with the base engine weight of 162 kg excluding engine oil and coolant and was reduced by 37 kg by applying alternative light-weight materiaLs and new manufacturing techniques. This corresponds to 23 % weight reduction. The materials used in the weight-reduced engine are 53 % steel, 33 % aluminum, 7 % plastics and 7 % other light-weight materials. It was found that by application of light-weight materials, the engine performance of the weight-reduced engine could be improved.
Technical Paper

A Study on a Simulation of a Head Form Impact Against Plastic Plates

1992-09-01
922085
A Finite Element Method (FEM) simulation was conducted to predict energy-absorbing characteristics in an impact of a head form against plastic plates. Static and dynamic material tests were conducted in order to determine material properties of the plastics. The properties were applied in an explicit FEM code. The FEM results were validated through the impact tests by the head form against the same plastic plates. It was proved that the FEM could simulate the test result well, when the precise material properties were introduced in the simulation. The method can be expected to be available to predict energy-absorbing characteristics during the impact by the head form against automobile plastic components such as shell portions of instrument panels.
X