Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Effect of the Right-and-left Torque Vectoring System in Various Types of Drivetrain

2007-08-05
2007-01-3645
This paper describes the calculative verification of the effect of the right-and-left torque vectoring system in various types of drivetrain, namely, the front wheels only, the rear wheels only, and both front and rear wheels in FWD, RWD, and AWD vehicles. The effect is evaluated by calculating the vehicle dynamics limit; maximum acceleration and cornering ability. The right-and-left vectoring torque, which is needed for expanding the vehicle dynamics limit, is also calculated. And finally, the paper evaluates the suitable wheels for which the system should be applied in each drivetrain. The application to the front wheels is more effective for FWD vehicles. On the other hand, the application to the rear wheels is more effective for RWD and AWD vehicles.
Technical Paper

Application to Body Parts of High-Strength Steel Sheet Containing Large Volume Fraction of Retained Austenite

1998-02-23
980954
Several different steel sheets were tested for energy absorption, using hat square columns and dynamic crash testing. Results indicate that steel sheets containing large volume fraction of retained austenite have relatively high energy absorption. The relationship between retained austenite and energy absorption was analyzed. These special steel sheets have already been successfully used for production body parts, such a front-side-member, without difficulties arising in volume production.
Technical Paper

Development of Austempered Ductile Iron Timing Gears

1997-11-17
973253
Austempered ductile iron (ADI) is a material having excellent mechanical properties and damping capacity. However practical mass production of ADI gears has not been possible due to ADI's poor machinability and distortion during the austempering heat treatment. With a new process method of carrying out hobbing before austempering when the material is in its soft condition, then austempering it and lastly, conducting the shave finishing process, we have diminished the above defects and developed practical ADI gears. These new gears generate less noise than ordinary nitrocarburized steel gears and are superior in pitting resistance.
Technical Paper

Development of Damping SMC and Its Application as Material for a Rockercover

1996-02-01
960146
When replacing a metal engine part with plastic, it is necessary to regard vibration damping as one of the important factors in terms of noise reduction as well as strength and heat resistance as being characteristics of the material. Plastics are far better for vibration damping than steel or aluminum, but this property is reduced by the addition of glassfiber-reinforced or high heat-resisting resins. We have taken notice of SMC (Sheet Molding Compound) which has the excellent strength and heat resistance properties and studied it in order to increase its vibration damping property. Since organic polymers show the peak value for vibration damping performance in the vicinity of the glass transition temperature (Tg), we studied a method to shift the Tg near the operating temperature region in order to improve the vibration damping property.
Technical Paper

Development of Hard Sintered Tappet and New Testing Method

1995-02-01
950389
We have developed a tappet with a cam lobe contacting tip made of a hard sintered material whose base material is cobalt, which adheres less to the steel of camshafts, and which also contains fine particles of tungsten carbide and chrome carbide. We have established a new evaluation method to access wear resistance performance of the tappet. It enables us to measure directly the friction force generated between the cam lobe and tappet and to evaluate anti-scuffing performance with high accuracy because we can clarify the time, load and cam angle at which scuffing occures.
Technical Paper

Four Wheel Steering System for Medium-Duty Trucks

1994-11-01
942310
From the standpoint of safety, the demands are growing in recent years for better controllability and stability of automobiles and in particular in trucks. The truck, however, when compared with the passenger car, is subject to larger changes in gross vehicle mass and center of gravity depending on its load placement. In addition, since the cornering power generated by the truck tire per load is smaller than that generated by the passenger car tire, it is difficult to introduce significant improvements in controllability and stability simply by use of passive techniques like suspension characteristic tuning. Therefore, studies were performed on the applicability of the 4WS system, an active vehicle dynamic characteristic control technique, to a Truck as a means for solving these problems.
Technical Paper

The Aerodynamic Development of a Small Specialty Car

1994-03-01
940325
Aerodynamic drag reduction is one of the most important aspects of enhancing overall vehicle performance. Many car manufacturers have been working to establish drag reduction techniques. This paper describes the development process of a new small speciality car which achieved coefficient of drag(CD) of 0.25. A description of the test facilities and the systems used for developing the aerodynamic aspect of the car are also introduced briefly.
Technical Paper

Development of Anti-Corrosion Steel Sheet Containing Copper for Automobile Body Parts

1994-03-01
940538
An investigation of anti-corrosion steel sheets (non-galvanized) which contain copper for automobile body parts has been conducted. Copper additives accelerate the formation of amorphous substrates. These substrates decrease the rate of corrosion. In order to retain the steel's formability and weldability, the contents of the alloying elements have been optimized. As a result, this newly developed steel sheet can be used for many different applications such as door sashes and door panels of mass produced cars. This paper describes the key properties of the newly developed steel sheet and additionally the mechanism of corrosion prevention, weldability, formability, and so on.
Technical Paper

Design and Testing of Ovate Wire Helical Springs

1993-10-01
932891
This paper describes the results of the study and research on ovate wire helical springs which have been jointly conducted by the members of the Japan Society for Spring Research consisting of the engineers from material suppliers, wire and spring producers and automotive manufacturers as well as researchers at Japanese universities. Attention is focused particularly on two types of wire cross sections, typical elliptical shape and Fuchs' egg-shape. Stresses on these two cross sections were analyzed by numerical calculations within the range of practical specification, and then the results have been compared with those of round wire spring. As a result, it has been found that the elliptical wire spring is superior to Fuchs- egg-shaped one for general application. Simple designing methods for the both types of wire helical springs have been developed based on the findings from the stress analysis.
Technical Paper

Development of a New Torsional Rubber Damper for Diesel Engines

1993-05-01
931308
It is well-known that double-mass torsional rubber dampers which have two masses and springs in parallel are effective for controlling torsional vibration characteristics over a wide range of engine speed. On the occasion of reliability estimation of the rubber dampers, it is important to consider generation of heat in the rubber due to torsional vibration. By predicting generation of heat at the designing stage, optimum design of the torsional rubber dampers can be achieved. By development and application of this prediction method, a new type double-mass damper was developed. It provided higher vibration control characteristics and reliability than conventional viscous dampers, and also it provided advantages in terms of noise, productivity and weight.
Technical Paper

Engine Weight Reduction Using Alternative Light Materials

1992-09-01
922090
This paper presents several methods for reducing engine weight primarily through substitution with light-weight materials. The efficiency and performance of the engine were reviewed using a light-weight experimental engine (hereinafter called “weight-reduced engine”) constructed by the authors in order to investigate the possibility of practical use of the proposed weight reduction measures. The weight-reduced engine is based on an in-line 4-cylinder, 2.0 liter, gasoline engine with the base engine weight of 162 kg excluding engine oil and coolant and was reduced by 37 kg by applying alternative light-weight materiaLs and new manufacturing techniques. This corresponds to 23 % weight reduction. The materials used in the weight-reduced engine are 53 % steel, 33 % aluminum, 7 % plastics and 7 % other light-weight materials. It was found that by application of light-weight materials, the engine performance of the weight-reduced engine could be improved.
Technical Paper

Shape Optimization of Solid Structures Using the Growth-Strain Method (Application to Chassis Components)

1992-06-01
921063
This paper describes the shape optimization analysis of solid structures such as chassis components of a car, where the shape optimization problems of linearly elastic structures are treated to improve strength or to reduce weight of solid structures. The optimization method used here is the growth-strain method, and the shape optimization system is developed based on this method. The growth-strain method, which modifies a shape by generating bulk strain, was previously proposed for analysis of the uniform-strength shape. The generation law of the bulk strain is given as a function of a distributed parameter to be uniformed, such as von Mises stress. Two improved generation laws are presented. The first law makes the distributed parameter uniform while controlling the structural volume to a target value. The second law makes the distributed parameter uniform while controlling the maximum value of the distributed parameter to a target value.
Technical Paper

A New Approach to Vehicle Interior Control

1991-02-01
910472
In order to meet increasing demands for safety and comfort in a vehicle compartment, automatic adjustment of seat, mirrors, steering wheel has been developed. The multiplex wiring system was constructed for the automatic adjustment of the cockpit elements to drivers preferred positions or to physique-matched settings based on ergonomic data. This paper describes the construction of the multiplex system and functions of automatic adjustment of the cockpit elements for comfortable driving position and better visibility.
Technical Paper

Development of Titanium Alloy Valve Spring Retainers

1991-02-01
910428
Beta Ti alloy valve spring retainers are newly developed for use in mass produced automobiles for the first time. Ti alloy valve spring retainers vith a weight saving of 42%, compared to steel retainers, have reduced the inertial weight of the valve train components by 6%. And this weight reduction has the benefit of increasing the upper limit of the engine speed, which improves the engine performance. Ti alloy valve spring retainers are cold forged by the conventional fabrication facilities for steel retainers, using Ti-22V-4Al (the beta Ti alloy) which possesses excellent cold workability in a solution treated condition. Oxygen surface hardening is applied to protect Ti alloy valve spring retainers from wear damage. In addition, aging treatment and shot blasting are performed to improve strength and stiffness of valve retainers.
Technical Paper

The Influence of Tire Deformation on Ride Comfort of a Truck

1990-10-01
902268
When truck tires have a deformation such as radial runout, flat spot, and abnormal wear as a result of panic braking, they affect vehicle vibration in the form of displacement input whose spectrum involves higher order terms of tire revolution. While a truck has vibration modes of frame bending as well as pitching and unsprung-mass viberation in the input frequency range, the tire displacement input induces vehicle vibration as a combination of these modes. Results of calculations and experiments of a 4x2 medium-duty truck are analyzed and an example of means for improving ride comfort is described in this paper.
Technical Paper

Ceramic Tappets Cast in Aluminum Alloy for Diesel Engines

1990-02-01
900403
The authors developed, for use in diesel engines, ceramic tappets cast in aluminum alloy that drastically improved wear resistance and valve train dynamics. The ceramic tappets consist of two parts: a ceramic head, which contacts the cam and push rod, and a tappet body made of aluminum alloy. Concerning the ceramic, silicon nitride was the best material of the three ceramics evaluated in the tests and the sliding surface, in contact with the cam and push rod, was left unground. As for the aluminum alloy, hyper-eutectic aluminum-silicon alloy with a controlled pro-eutectic silicon size was selected. A reliability analysis using the finite-element method (FEM) was also made on the structure of the ceramic tappet for enhanced durability and reliability. The combination of this tappet and a cam made of hardened ductile cast iron, hardened steel, or chilled cast iron, respectively exhibits excellent wear resistance.
Technical Paper

Application of Micro-Alloyed Steel to Diesel Engine Parts for Trucks and Buses

1989-02-01
890137
Applying micro-alloyed steel as a cost-effective method of forging engine parts eliminates quench and temper processes and saves energy. We have expanded this application to timing gears and crankshafts by changing the connecting rod material to carbon steel and vanadium, applied at the outset. Then, micro-alloyed steel treated with a soft nitriding process was used. Our recent studies have been focused on materials which exhibit both higher tensile strength and better machinability. This paper describes the results of applying different types of micro-alloyed steel to those engine parts.
Technical Paper

A New Hydraulic Coupling Unit (HCU) for 4WD Vehicles

1989-02-01
890527
This year (1989) Mitsubishi Motors Corp. introduced, on some models, a newly-developed Hydraulic Coupling Uint (HCU), by which 2WD vehicles can be converted into 4WD ones in the same way as done by a viscous coupling (VC). This HCU is similar in the configuration to a vane pump: the oil discharge is returned to the suction chamber through a number of orifices. The rotor and cam ring (housing) are respectively connected to the two shafts; either of the one with the front wheels and the other with the rear wheels. Accordingly, it works as a slip-sensitive differential like a VC while it has a merit of progressive and parabolic torque-response characteristic, which offers stronger traction and acceleration capability and also minimizes tight-corner braking. This paper discusses primarily the configurations, functions and test results of the HCU and also presents an overview on further development possibilities of the 4WD system.
Technical Paper

Hot-Gas Spin Testing of Ceramic Turbine Rotor at TIT 1300° C

1989-02-01
890427
The high-temperature durability of 85 mm tip diameter silicon nitride ceramic radial turbine rotors was evaluated with a hot gas spin test rig. The rotors withstood up to a turbine tip speed of 700 m/s at TIT of 1300°C under partially loaded conditions and 570 m/s at TIT of 1300°C under fully loaded conditions, respectively. The material of the rotors was a post-HIPed silicon nitride. The basic fatigue properties of the material were measured at high temperatures. In the hot gas spin test, the temperature and stress distributions at the turbine blade were calculated with a finite element method. The results of the hot-gas spin test are discussed by means of a failure prediction analysis on the basis of the Weibull statistics.
Technical Paper

Development of Diesel Particulate Trap Oxidizer System

1986-03-01
860294
A particulate trap oxidizer system to reduce diesel particulate emissions has been developed. This system consists of a ceramic foam filter with an optimum volume, shape, and mesh number in terms of collection efficiency, pressure loss and particulate blow-off; a catalyst with a low activated-temperature for particulate incineration and with no sulfate formation during highway driving; and a regeneration system which prevents particulate overcollection during long-term continuous low-load/low-speed driving where it is difficult to achieve self-burning of particulates with a catalytic reaction. This paper describes the development of the particulate trap oxidizer system with these technologies and presents the results of practicability evaluations and 50,000-mile vehicle durability tests.
X