Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Review of Recent Programs and Future Plans for Rotorcraft In-Flight Simulation at Ames Research Center

1991-09-01
912121
A new flight research vehicle, the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL), is being developed by the U.S. Army and NASA at Ames Research Center. The requirements for this new facility stem from a perception of rotorcraft system technology requirements for the next decade together with operational experience with the Boeing Vertol CH-47B research helicopter that was operated as an in-flight simulator at Ames during the past 10 years. Accordingly, both the principal design features of the CH-47B variable-stability system and the flight-control and cockpit-display programs that were conducted using this aircraft at Ames are reviewed. Another U.S. Army helicopter, a Sikorsky UH-60A Black Hawk, has been selected as the baseline vehicle for the RASCAL. The research programs that influence the design of the RASCAL are summarized, and the resultant requirements for the RASCAL research system are described.
Technical Paper

Simulation Evaluation of Transition and Hover Flying Qualities of a Mixed-Flow, Remote-Lift STOVL Aircraft

1989-09-01
892284
Using a generalized simulation model developed for piloted evaluations of short take-off/vertical landing aircraft, an initial fixed-base simulation of a mixed-flow, remote-lift configuration has been completed. Objectives of the simulation were to evaluate the integration of the aircraft's flight and propulsion controls to achieve good flying qualities throughout the low-speed flight envelope; to determine control power used during transition, hover, and vertical landing; and to evaluate the transition flight envelope considering the influence of thrust deflection of the remote-lift component. Pilots’ evaluations indicated that Level 1 flying qualities could be achieved for deceleration to hover in instrument conditions, for airfield landings, and for recovery to a small ship when attitude and velocity stabilization and command augmentation control modes were provided.
Technical Paper

Propulsion-Induced Effects Caused by Out-of- Ground Effects

1987-12-01
872307
Propulsion induced effects encountered by moderate- to high-disk loading STOVL or VSTOL aircraft out-of-ground effect during hover and transition between hover and wing-borne flight are discussed. Descriptions of the fluid flow phenomena are presented along with an indication of the trends obtained from experimental investigations. In particular, three problem areas are reviewed: 1) the performance losses sustained by a VSTOL aircraft hovering out-of-ground effect, 2) the induced aerodynamic effects encountered as a VSTOL aircraft flies on the combination of powered and aerodynamic lifts between hover and cruise out-of-ground effect, and 3) the aerodynamic characteristics caused by deflected thrust during maneuvering flight over a wide ranges of both angle of attack and Mach number.
Technical Paper

Civil Applications of High Speed Rotorcraft and Powered Lift Aircraft Configurations

1987-12-01
872372
Advanced subsonic vertical and short takeoff and landing (V/STOL) aircraft configurations offer new transportation options for civil applications. This paper describes a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, V/STOL aircraft, and short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these configurations show promise for relieving congestion in high population density regions and providing transportation opportunities for low population density regions.
Technical Paper

Takeoff Predictions for Powered-Lift Aircraft

1986-10-01
861630
Takeoff predictions for powered lift short takeoff (STO) aircraft have been added to NASA AMES Research Center's aircraft synthesis (ACSYNT) code. The new computer code predicts the aircraft engine and nozzle settings required to achieve the minimum takeoff roll. As a test case, it predicted takeoff ground rolls and nozzle settings for the YAV-8B Harrier that were close to the actual values. Analysis of takeoff performance for an ejector-augmentor design and a vectoring-nozzle design indicated that ground roll can be decreased, for either configuration, by horizontally moving the rear thrust vector closer to the center of gravity, by increasing the vertical position of the ram drag-vector, or by moving the rear thrust vector farther below the center of gravity.
Technical Paper

VTOL Controls for Shipboard Operations

1983-10-03
831428
Piloted, moving-base simulations have been performed in the evaluation of several VTOL control system concepts during landings on a destroyer in adverse weather conditions. All the systems incorporated attitude control augmentation; most systems incorporated various types of translational control augmentation implemented either through aircraft attitude or, more directly, through the propulsion system (thrust magnitude and deflection). Only one of the control systems failed to provide satisfactory handling qualities in calm seas. Acceptable handling qualities in sea state 6 seem to require a system with control augmentation in all translational degrees of freedom.
Technical Paper

Propulsion Simulation Test Technique for V/STOL Configurations

1983-10-03
831427
Ames Research Center is developing the technology for turbine-powered jet engine simulators so that airframe/propulsion system interactions on V/STOL fighter aircraft and other highly integrated configurations can be studied. This paper describes the status of the compact multimission aircraft propulsion simulator (CMAPS) technology. Three CMAPS units have accumulated a total of 340 hr during approximately 1-1/2 yr of static and wind-tunnel testing. A wind-tunnel test of a twin-engine CMAPS-equipped close-coupled canard-wing V/STOL model configuration with nonaxisymmetric nozzles was recently completed. During this test approximately 140 total hours were logged on two CMAPS units, indicating that the rotating machinery is reliable and that the CMAPS and associated control system provide a usable test tool. However, additional development is required to correct a drive manifold O-ring problem that limits the engine-pressure-ratio (EPR) to approximately 3.5.
Technical Paper

Handling Qualities of Canards, Tandem Wings, and Other Unconventional Configurations

1983-02-01
830763
Over the years, a wide variety of aircraft configurations have been flown with varying degrees of success. A brief survey of the handling qualities of canard, tandem wing, and flying wing designs indicates that longitudinal stability and control, lateral/directional stability and control, and stall behavior of these concepts were important factors in achieving pilot acceptance.
Technical Paper

Low-Speed Aerodynamic Characteristics of a Generic Forward-Swept-Wing Aircraft

1982-02-01
821467
Low-speed wind-tunnel tests were performed on a generic forward-swept-wing aircraft model in the 7- by 10-Foot Wind Tunnel (No. 2) at Ames Research Center. The effects of various configurational changes and control-surface deflections on the performance of the model were measured. Six-component force measurements were augmented by flow-visualization photographs, using both surface oil-flow and tufts. It was found that the tendency toward premature root separation on the forward-swept wing could be reduced by use of either canards or leading-edge wing strakes and that differential canard deflections can be used to produce direct side-force control.
X