Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Review of Recent Programs and Future Plans for Rotorcraft In-Flight Simulation at Ames Research Center

A new flight research vehicle, the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL), is being developed by the U.S. Army and NASA at Ames Research Center. The requirements for this new facility stem from a perception of rotorcraft system technology requirements for the next decade together with operational experience with the Boeing Vertol CH-47B research helicopter that was operated as an in-flight simulator at Ames during the past 10 years. Accordingly, both the principal design features of the CH-47B variable-stability system and the flight-control and cockpit-display programs that were conducted using this aircraft at Ames are reviewed. Another U.S. Army helicopter, a Sikorsky UH-60A Black Hawk, has been selected as the baseline vehicle for the RASCAL. The research programs that influence the design of the RASCAL are summarized, and the resultant requirements for the RASCAL research system are described.
Technical Paper

Research Centrifuge Accommodations on Space Station Freedom

The Space Station Freedom will provide a wealth of new opportunities for life sciences research in the microgravity environment of Earth orbit. Such research will require the long-term housing of plant and animal subjects, as well as cell and tissue culture support systems. In addition to newly designed plant and animal vivaria for micro-g, housing for control subjects at one g and fractional g will be required to provide scientific controls, support gravity threshold studies, and perform experiments at Lunar and Mars gravity levels. A natural adjunct to a set of microgravity vivaria in space is, therefore, a centrifuge which could expose the same specimens to variable gravity levels. The larger the centrifuge, the more subjects that can be housed, the smaller the gravity gradient on the subjects, and the smaller the Coriolis effects. Early studies recommended a 4.0 meter diameter centrifuge, the largest that could be accommodated in a Shuttle launchable module.
Technical Paper

Facilities for Animal Research in Space with Special Reference to Space Station Freedom

The facilities being planned for animal research on Space Station Freedom are considered in the context of the development of animal habitats from early ballistic and orbital flights to long-term missions aimed at more detailed scientific studies of the effects of space conditions on the vertebrate organism. Animal habitats are becoming more elaborate, requiring systems for environmental control, waste management, physiological monitoring, as well as ancillary facilities such as a 1-G control centrifuge and a glovebox. Habitats in use or to be used in various types of manned and unmanned spacecraft, and particularly those planned for Space Station Freedom, are described. The characteristics of the habitats are compared with each other and with current standards for animal holding facilities on the ground.
Technical Paper

The Rodent Research Animal Holding Facility as a Barrier to Environmental Contamination

The first step in verifying the design of the rodent Research Animal Holding Facility (RAHF) as a barrier to environmental contaminants was successfully completed at NASA Ames Research Center (ARC) during a 12-day bio-compatibility test. Environmental contaminants considered were solid particulates, microorganisms, ammonia, and odor-producing organics. The 12-day test at ARC was conducted in August 1988, and was designed to verify that the rodent RAHF system would adequately support and maintain animal specimens during normal system operations. Additional objectives of this test were to demonstrate that: 1) typical particulate debris produced by the animal, i.e., feces and food bar crumbs, would be captured by the system; 2) microorganisms would be contained; and 3) the passage of odor-producing organics and ammonia generated by the animals was adequately controlled. In addition, the amount of carbon dioxide exhausted by the RAHF system was to be quantified.
Technical Paper

Spacelab Life Sciences-2 ARC Payload-An Overview

The Spacelab Life Sciences 2 mission (SLS-2) is the second in a planned series of dedicated Life Sciences missions utilizing the European Space Agency-provided Spacelab module. The mission, tentatively scheduled for a mid-1992 launch, will comprise a total of eighteen experiments encompassing both human and animal research. Eight of the eighteen experiments will involve animal life sciences research and will be managed by the Space Life Sciences Payloads Office (SLSPO) at NASA's Ames Research Center (ARC). The ARC payload complement of eight experiments will include six which use rodents and two which use primates (squirrel monkeys). SLS-2 provides an opportunity for even more extensive investigations into the effects of weightlessness upon the anatomy and physiology of rodent and primate systems.