Refine Your Search

Topic

Search Results

Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
Technical Paper

NASA Personal Air Transportation Technologies

2006-08-30
2006-01-2413
The ability to personalize air travel through the use of an on-demand, highly distributed air transportation system will provide the degree of freedom and control that Americans enjoy in other aspects of their life. This new capability, of traveling when, where, and how we want with greatly enhanced mobility, accessibility, and speed requires vehicle and airspace technologies to provide the equivalent of an internet PC ubiquity, to an air transportation system that now exists as a centralized hub and spoke mainframe NASA airspace related research in this new category of aviation has been conducted through the Small Aircraft Transportation (SATS) project, while the vehicle technology efforts have been conducted in the Personal Air Vehicle sector of the Vehicle Systems Program.
Technical Paper

Steps Toward Developing a Multi-layer Green’s Function Code for Ion Beam Transport

2006-07-17
2006-01-2148
Recently, a new Green’s function code (GRNTRN) for simulation of HZE ion beams in the laboratory setting has been developed. Once fully developed and experimentally verified, GRNTRN will be a great asset in assessing radiation exposures in both the laboratory and space settings. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple elastic scattering, and nuclear reactive processes with use of Neumann-series expansions with non-perturbative corrections. The code contains energy loss with straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and down shifts. Previous reports show that the new code accurately models the transport of ion beams through a single slab of material. Current research efforts are focused on enabling the code to handle multiple layers of material and the present paper reports on progress made towards that end.
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

2006-07-17
2006-01-2109
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

Biologically Inspired Micro-Flight Research

2003-09-08
2003-01-3042
Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed-wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.
Technical Paper

Solutions to the Low Energy Neutron Boltzmann Equation for Space Applications

2003-07-07
2003-01-2351
One goal of space radiation research is to reduce the computational time and increase the accuracy of various radiation calculations to aid in their use in a collaborative engineering environment. For example, a fast turn around time is a feature needed for comparison of radiation shielding effects associated with various design configurations of the International Space Station. Research toward this effort has been conducted on various forms of the low energy neutron Boltzmann equation. Simplified models involving the straight ahead approximation, which have fast computational speeds, have been developed at NASA Langley Research Center during the late 1980's as part of a larger high energy ion transport code. Various modifications to improve the accuracy of these computer codes have been an ongoing project. The goal to increase the accuracy of low energy neutron transport without effecting the fast computational times has been a successful ongoing research effort.
Technical Paper

A Comparison of Pressure Sensitive Paint (PSP) Techniques for Aerodynamic Testing at Slow Velocities

2002-03-04
2002-01-0255
Pressure Sensitive Paint (PSP) has been used for several years by the aircraft industry in transonic wind tunnel testing where the oxygen concentrations are low and the luminescence of the paint is easily recorded. Extending PSP to slower speeds where the oxygen concentrations are closer to atmospheric conditions is much more challenging. For the past few years, work has been underway at both Wright Patterson Air Force Base and Ford Motor Company to advance PSP techniques for testing at slower speeds. The CRADA (Cooperative Research and Development Agreement) provided a way for comparisons to be made of the different PSP systems that were being investigated. This paper will report on PSP tests conducted as part of the CRADA.
Technical Paper

An Experimental Investigation of the Flow Over the Rear End of a Notchback Automobile Configuration

2000-03-06
2000-01-0489
An experimental investigation of the flow over the rear end of a 0.16 scale notchback automobile configuration has been conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART). The objective of this work was to investigate the flow separation that occurs behind the backlight and obtain experimental data that can be used to understand the physics and time-averaged structure of the flow field. A three-component laser velocimeter was used to make non-intrusive, velocity measurements in the center plane and in a single cross-flow plane over the decklid. In addition to off-body measurements, flow conditions on the car surface were documented via surface flow visualization, boundary layer measurements, and surface pressures.
Technical Paper

Aerodynamic-Performance Planform and Camber Optimization of a Supersonic Transport Wing

1993-09-01
932632
This paper describes recent research in integrated aerodynamic-performance design optimization applied to a supersonic transport wing. The subsonic and supersonic aerodynamics are modeled with linear theory and the aircraft performance is evaluated by using a complete mission analysis. The goal of the optimization problem is to either maximize the aircraft range or minimize the take-off gross weight while constraining the total fuel load and approach speed. A major difficulty encountered during this study was the inability to obtain accurate derivatives of the aerodynamic models with respect to the planform shape. This work addresses this problem and provides one solution for the derivative difficulties. Additional optimization studies reveal the impact of camber design on the global optimization problem. In these studies, the plan-form optimization is first conducted on a flat plate wing and camber optimization is performed on the resulting planform.
Technical Paper

Langley Research Center Resources and Needs for Manned Space Operations Simulation

1987-10-01
871724
Over the past three decades, the application of simulation facilities to manned space flight projects has increased chances of successful mission completion by revealing the capabilities and limitations of both man and machine. The Space Station era, which implies on-orbit assembly, heightened system complexity, and great diversity of operations and equipment, will require increased dependence on simulation studies to validate the tools and techniques being proposed. For this reason the Society of Automotive Engineers (SAE) undertook a survey of both the facilities available for and the research requiring such simulations. This paper was written to provide LaRC input to the SAE survey of simulation needs and resources. The paper provides a brief historial sketch of early Langley Research Center simulators, and the circumstances are described which resulted in a de-emphasis of manned simulation in 1971.
Technical Paper

The Laminar Separation Sensor: An Advanced Transition Measurement Method for Use in Wind Tunnels and Flight

1987-09-01
871018
Current viscous drag reduction research explores the limits of practical applications of natural laminar flow (NLF) for airplane drag reduction. To better understand these limits, advanced measurement techniques are required to study the characteristics of laminar to turbulent boundary-layer transition. Recent NASA research indicates that the transition mode which involves laminar separation can be detected using arrayed hot-film laminar separation sensor concepts. These surface-mounted sensors can provide information on the location of the laminar separation bubble as well as bubble length. This paper presents two different laminar separation sensor configurations developed in the NASA program and presents results of wind-tunnel and flight evaluations of the sensors as tools to detect boundary-layer transition.
Technical Paper

Tire and Runway Surface Research

1986-11-01
861618
The condition of aircraft tires and runway surfaces can be crucial in meeting the stringent demands of aircraft ground operations, particularly under adverse weather conditions. Gaining a better understanding of the factors influencing the tire/pavement interface is the aim of several ongoing NASA Langley research programs which are described in this paper. Results from several studies conducted at the Langley Aircraft Landing Dynamics Facility, tests with instrumented ground vehicles and aircraft, and some recent aircraft accident investigations are summarized to indicate effects of different tire and runway properties. The Joint FAA/NASA Runway Friction Program is described together with some preliminary test findings. The scope of future NASA Langley research directed towards solving aircraft ground operational problems related to the tire/pavement interface is given.
Technical Paper

A Faster “Transition” to Laminar Flow

1985-11-01
851855
A discussion is given of the ongoing research related to laminar flow airfoils, nacelles, and wings where the laminar flow is maintained by a favorable pressure gradient, surface suction or a combination of the two. Design methologies for natural laminar flow airfoil sections and wings for both low and high speed applications are outlined. Tests of a 7-foot chord, 23° sweep laminar-flow-control-airfoil at high subsonic Mach numbers are described along with the associated stability theory used to design the suction system. The state-of-the-art of stability theory is simply stated and a typical calculation illustrated. In addition recent computer simulations of transition using the time dependent Navier-Stokes (N-S) equations are briefly described. Advances in wind tunnel capabilities and instrumentation will be reviewed followed by the presentation of a few results from both wind tunnels and flight. Finally, some suggestions for future work will complete the paper.
Technical Paper

Status of Wind Tunnel Magnetic Suspension Research

1985-10-01
851898
This paper reports the status of the NASA Langley Research Center program aimed at the development of the technology required for large-scale Magnetic Suspension and Balance Systems. The use of magnetic suspension of the model in a wind tunnel is seen to be the only viable method to eliminate aerodynamic interference problems arising with mechanical model-supports. The two small-scale magnetic suspension systems in operation at Langley are the only ones now active in the U.S. The general features and capabilities of these two systems and all of the ongoing research in the use of magnetic suspension are described.
Technical Paper

Simulation Study of an Automatic Trim System for Reducing the Control Forces on a Light Twin After an Engine Failure

1985-04-01
850913
An automatic trim system for reducing the control forces after an engine failure on a light twin has been investigated on the Langley General Aviation Simulator. The system schedules open-loop trim tab deflections as a function of differential propeller slipstream dynamic pressure and freestream dynamic pressure. The system is described and the airplane-system static and dynamic characteristics are documented. Three NASA research pilots evaluated the effectiveness of the system for takeoff and landing maneuvers. A variety of off-nominal system characteristics were studied. The system was judged to be generally beneficial, providing a 2 to 3 point improvement in pilot rating for the tasks used in the evaluations.
Technical Paper

An Investigation of the Effects of the Propeller Slipstream on a Laminar Wing Boundary Layer

1985-04-01
850859
A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.
Technical Paper

Flight Investigation of Natural Laminar Flow on the Bellanca Skyrocket II

1983-02-01
830717
Two major concerns have inhibited the use of natural laminar flow (NLF) for viscous drag reduction on production aircraft. These are the concerns of achieveability of NLF on practical airframe surfaces, and maintainability in operating environments. Previous research in this area left a mixture of positive and negative conclusions regarding these concerns. While early (pre-1950) airframe construction methods could not achieve NLF criteria for waviness, several modern construction methods (composites for example) can achieve the required smoothness. This paper presents flight experiment data on the achieveability and maintainability of NLF on a high-performance, single-propeller, composite airplane, the Bellanca Skyrocket II. The significant contribution of laminar flow to the performance of this airplane was measured. Observations of laminar flow in the propeller slipstream are discussed, as are the effects of insect contamination on the wing.
Technical Paper

Review of NASA Antiskid Braking Research

1982-02-01
821393
NASA antiskid braking system research programs are reviewed. These programs include experimental studies of four antiskid systems on the Langley Landing Loads Track, flight tests with a DC-9 airplane, and computer simulation studies. Results from these research efforts include identification of factors contributing to degraded antiskid performance under adverse weather conditions, tire tread temperature measurements during antiskid braking on dry runway surfaces, and an assessment of the accuracy of various brake pressure-torque computer models. This information should lead to the development of better antiskid systems in the future.
Technical Paper

Spin Flight Research Summary

1979-02-01
790565
An extensive general aviation stall/spin research program is underway at the NASA Langley Research Center. Flight tests have examined the effects of tail design, wing leading edge design, mass distribution, and minor airframe modifications on spin and recovery characteristics. Results and observations on test techniques are presented for the first airplane in the program. Configuration changes produced spins varying from easily recoverable slow, steep spins to unrecoverable, fast flat spins.
Technical Paper

Light Aircraft Crash Safety Program

1974-02-01
740353
The Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) have joined forces in a General Aviation Crashworthiness Program. This paper describes the research and development tasks of the program which are the responsibility of NASA. NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions.
X