Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

2006-07-17
2006-01-2109
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

Steps Toward Developing a Multi-layer Green’s Function Code for Ion Beam Transport

2006-07-17
2006-01-2148
Recently, a new Green’s function code (GRNTRN) for simulation of HZE ion beams in the laboratory setting has been developed. Once fully developed and experimentally verified, GRNTRN will be a great asset in assessing radiation exposures in both the laboratory and space settings. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple elastic scattering, and nuclear reactive processes with use of Neumann-series expansions with non-perturbative corrections. The code contains energy loss with straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and down shifts. Previous reports show that the new code accurately models the transport of ion beams through a single slab of material. Current research efforts are focused on enabling the code to handle multiple layers of material and the present paper reports on progress made towards that end.
X