Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

NASA Heavy Lift Rotorcraft Systems Investigation

2005-10-03
2005-01-3149
The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development.
Technical Paper

Resistively-Heated Microlith-Based Adsorber for Carbon Dioxide and Trace Contaminant Removal

2005-07-11
2005-01-2866
An integrated sorber-based Trace Contaminant Control System (TCCS) and Carbon Dioxide Removal Assembly (CDRA) prototype was designed, fabricated and tested. It corresponds to a 1-person load. Performance over several adsorption/regeneration cycles was examined. Vacuum regenerations at effective time/ temperature conditions, and estimated power requirements were experimentally verified for the combined CO2/trace contaminant removal prototype. The current paper details the design and performance of this prototype during initial testing at CO2 and trace contaminant concentrations in the existing CDRA, downstream of the drier. Additional long-term performance characterization is planned at NASA. Potential system design options permitting associated weight, volume savings and logistic benefits, especially as relevant for long-duration space flight, are reviewed.
Technical Paper

Microlith Based Sorber for Removal of Environmental Contaminants

2004-07-19
2004-01-2442
The development of energy efficient, lightweight sorption systems for removal of environmental contaminants in space flight applications is an area of continuing interest to NASA. The current CO2 removal system on the International Space Station employs two pellet bed canisters of 5A molecular sieve that alternate between regeneration and sorption. A separate disposable charcoal bed removes trace contaminants. An alternative technology has been demonstrated using a sorption bed consisting of metal meshes coated with a sorbent, trademarked and patented [1] as Microlith® by Precision Combustion, Inc. (PCI); these meshes have the potential for direct electrical heating for this application. This allows the bed to be regenerable via resistive heating and offers the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. The capability of removing both CO2 and trace contaminants within the same bed has also been demonstrated.
Technical Paper

International Space Station Internal Thermal Control System Lab Module Simulator Build-Up and Validation

2003-07-07
2003-01-2519
As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To predict ITCS performance and address flight issues, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW® programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and it was validated in 2003. Even before complete validation the facility was used to address flight issues, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant.
Technical Paper

International Space Station Internal Thermal Control System Cold Plate/Fluid-Stability Test - Two Year Update

2003-07-07
2003-01-2518
Operation of the Internal Thermal Control System (ITCS) Cold Plate/Fluid-Stability Test Facility commenced on September 5, 2000. The facility was intended to provide advance indication of potential problems on board the International Space Station (ISS) and was designed: To be materially similar to the flight ITCS. To allow for monitoring during operation. To run continuously for three years. During the first two years of operation the conditions of the coolant and components were remarkably stable. During this same period of time, the conditions of the ISS ITCS significantly diverged from the desired state. Due to this divergence, the test facility has not been providing information useful for predicting the flight ITCS condition. Results of the first two years are compared with flight conditions over the same time period, showing the similarities and divergences.
Technical Paper

Selection of an Alternate Biocide for the International Space Station Internal Active Thermal Control System Coolant Loops

2003-07-07
2003-01-2568
The International Space Station (ISS) IATCS (Internal Active Thermal Control System) includes two internal coolant loops that use an aqueous based coolant for heat transfer. A silver salt biocide was used initially as an additive in the coolant formulation to control the growth and proliferation of microorganisms in the coolant loops. Ground-based and in-flight testing has demonstrated that the silver salt is rapidly depleted and not effective as a long-term biocide. Efforts are now underway to select an alternate biocide for the IATCS coolant loop with greatly improved performance. An extensive evaluation of biocides was conducted to select several candidates for test trials.
Technical Paper

Mathematical Analysis of Space Radiator Segmenting for Increased Reliability and Reduced Mass

2001-07-09
2001-01-2340
Spacecraft for long duration deep space missions will need to be designed to survive micrometeoroid bombardment of their surfaces some of which may actually be punctured. To avoid loss of the entire mission the damage due to such punctures must be limited to small, localized areas. This is especially true for power system radiators, which necessarily feature large surface areas to reject heat at relatively low temperature to the space environment by thermal radiation. It may be intuitively obvious, that if a space radiator is composed of a large number of independently operating segments, such as heat pipes, a random micrometeoroid puncture will result only in the loss of the punctured segment, and not the entire radiator. Due to the redundancy achieved by independently operating segments, the wall thickness and consequently the weight of such segments can be drastically reduced.
Technical Paper

Summary of NASA Aerodynamic and Heat Transfer Studies in Turbine Vanes and Blades

1976-02-01
760917
Aerodynamic effects of trailing edge geometry, hole size, angle, spacing, and shape have been studied in two- and three-dimensional cascades and in a warm turbine test series. Heat transfer studies have been carried out in various two- and three-dimensional test facilities in order to provide corresponding heat transfer data. Results are shown in terms of cooling effectiveness and aerodynamic efficiency for various coolant fractions, coolant-primary temperature ratios, and cooling configurations.
Technical Paper

Determination of Pressure Vessel Strengths at -423 F as Influenced by Notches of Various Radii

1962-01-01
620462
A facility was designed to burst scale model propellant tanks in the form of 6-in. diameter cylinders and which contained liquid hydrogen. The cylinders were machined from 2014-T6 extruded aluminum tubing and had notches of various radii. Conventional uniaxial notched tensile specimens were fabricated from the same tubing and the data were correlated with the burst results from the biaxially stressed cylinders.
X