Refine Your Search

Topic

Author

Search Results

Technical Paper

Biofidelity Evaluation of the THOR and Hybrid III 50th Percentile Male Frontal Impact Anthropomorphic Test Devices

2017-11-13
2017-22-0009
The objective of this study is to present a quantitative comparison of the biofidelity of the THOR and Hybrid III 50th percentile male ATDs. Quantitative biofidelity was assessed using NHTSA’s Biofidelity Ranking System in a total of 21 test conditions, including impacts to the head, face, neck, upper thorax, lower oblique thorax, upper abdomen, lower abdomen, femur, knee, lower leg, and whole-body sled tests to evaluate upper body kinematics and thoracic response under frontal and frontal oblique restraint loading. Biofidelity Ranking System scores for THOR were better (lower) than Hybrid III in 5 of 7 body regions for internal biofidelity and 6 of 7 body regions for external biofidelity. Nomenclature is presented to categorize the quantitative results, which show overall good internal and external biofidelity of the THOR compared to the good (internal) and marginal (external) biofidelity of the Hybrid III.
Technical Paper

Dynamic Properties of the Upper Thoracic Spine-Pectoral Girdle (UTS-PG) System and Corresponding Kinematics in PMHS Sled Tests

2012-10-29
2012-22-0003
Anthropomorphic test devices (ATDs) should accurately depict head kinematics in crash tests, and thoracic spine properties have been demonstrated to affect those kinematics. To investigate the relationships between thoracic spine system dynamics and upper thoracic kinematics in crash-level scenarios, three adult post-mortem human subjects (PMHS) were tested in both Isolated Segment Manipulation (ISM) and sled configurations. In frontal sled tests, the T6-T8 vertebrae of the PMHS were coupled through a novel fixation technique to a rigid seat to directly measure thoracic spine loading. Mid-thoracic spine and belt loads along with head, spine, and pectoral girdle (PG) displacements were measured in 12 sled tests conducted with the three PMHS (3-pt lap-shoulder belted/unbelted at velocities from 3.8 - 7.0 m/s applied directly through T6-T8).
Technical Paper

Response of PMHS to High- and Low-Speed Oblique and Lateral Pneumatic Ram Impacts

2011-11-07
2011-22-0011
In ISO Technical Report 9790 (1999) normalized lateral and oblique thoracic force-time responses of PMHS subjected to blunt pendulum impacts at 4.3 m/s were deemed sufficiently similar to be grouped together in a single biomechanical response corridor. Shaw et al., (2006) presented results of paired oblique and lateral thoracic pneumatic ram impact tests to opposite sides of seven PMHS at sub-injurious speed (2.5 m/s). Normalized responses showed that oblique impacts resulted in more deflection and less force, whereas lateral impacts resulted in less deflection and more force. This study presents results of oblique and lateral thoracic impacts to PMHS at higher speeds (4.5 and 5.5 m/s) to assess whether lateral relative to oblique responses are different as observed by Shaw et al., or similar as observed by ISO.
Technical Paper

Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading

2009-11-02
2009-22-0001
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage deformation. Anterior and superior displacement of the lower ribcage may have contributed to sternal fractures occurring early in the event, at displacement levels below those typically considered injurious, suggesting that fracture risk is not fully described by traditional definitions of chest deformation. The methodology presented here produced novel kinematic data that will be useful in developing biofidelic human models.
Technical Paper

NHTSA's Frontal Offset Research Program

2004-03-08
2004-01-1169
The National Highway Traffic Safety Administration (NHTSA) is conducting a research program to investigate the use of the 40 percent offset deformable barrier (ODB) crash test procedure to reduce death and injury, in particular debilitating lower extremity injuries in frontal offset collisions. This paper presents the results of 22 ODB crash tests conducted with 50th percentile male and 5th percentile female Hybrid III (HIII) dummies fitted with advanced lower legs, Thor-Lx/HIIIr and Thor-FLx/HIIIr, to assess the potential for debilitating and costly lower limb injuries. This paper also begins to investigate the implications that the ODB test procedure may have for fleet compatibility by evaluating the results from vehicle-to-vehicle crash tests.
Technical Paper

Design and Development of a Thor-Based Small Female Crash Test Dummy

2003-10-27
2003-22-0024
This paper describes the design and development of a small female crash test dummy, results of biofidelity tests, and preliminary results from full-scale, 3-point belt and airbag type sled tests. The small female THOR was designed using the anthropometric data developed by Robbins for the 5th percentile female and biomechanical requirements derived from scaling the responses of the 50th percentile male. While many of the mechanical components of the NHTSA THOR 50th percentile male dummy were scaled according to the appropriate anthropometric data, a number of improved design features have been introduced in the new female THOR. These include; improved neck design, new designs for the head and neck skins: and new designs for the upper and lower abdomen. The lower leg, ankle and foot, known as THOR-FLx, were developed in an earlier effort and have been included as a standard part of the new female dummy.
Technical Paper

On the Development of the SIMon Finite Element Head Model

2003-10-27
2003-22-0007
The SIMon (Simulated Injury Monitor) software package is being developed to advance the interpretation of injury mechanisms based on kinematic and kinetic data measured in the advanced anthropomorphic test dummy (AATD) and applying the measured dummy response to the human mathematical models imbedded in SIMon. The human finite element head model (FEHM) within the SIMon environment is presented in this paper. Three-dimensional head kinematic data in the form of either a nine accelerometer array or three linear CG head accelerations combined with three angular velocities serves as an input to the model. Three injury metrics are calculated: Cumulative strain damage measure (CSDM) – a correlate for diffuse axonal injury (DAI); Dilatational damage measure (DDM) – to estimate the potential for contusions; and Relative motion damage measure (RMDM) – a correlate for acute subdural hematoma (ASDH).
Technical Paper

Development of Side Impact Thoracic Injury Criteria and Their Application to the Modified ES-2 Dummy with Rib Extensions (ES-2re)

2003-10-27
2003-22-0010
Forty-two side impact cadaver sled tests were conducted at 24 and 32 km/h impact speeds into rigid and padded walls. The post-mortem human subjects were instrumented with accelerometers on the ribs and spine and chest bands around the thorax and abdomen to characterize their mechanical response during the impact. Load cells at the wall measured the impact force at the level of the thorax, abdomen, pelvis, and lower extremities. The resulting injuries were determined through detailed autopsy and radiography. Rib fractures with or without associated hemo/pneumo thorax or flail chest were the most common injury with severity ranging from AIS=0 to 5. Full and half thorax deflections were computed from the chest band data. The cadaver test data was analyzed using ANOVA and logistic regression. The age of the subject at the time of death had influence on injury outcome while gender and mass of the subject had little or no influence on injury outcome.
Technical Paper

Design of Temperature Insensitive Ribs for Crash Test Dummies

2003-03-03
2003-01-0502
The Isodamp damping material (also known as Navy Damp) used in the ribs of current crash test dummies provides human-like damping to the thorax under impact. However, the range of temperature over which it can be used is very small. A new rib design using laminates of steel, fiberglass, and commercially available viscoelastic material has been constructed. Load-deflection response and hysteresis of the laminated ribs were compared with corresponding conventional ribs fabricated from steel and Isodamp. Impact tests were conducted on laminated and conventional ribs at 18.5° C, 22.2° C and 26.6° C. Results indicate that the response of the laminated ribs is essentially the same as that of the ribs with Isodamp at 22.2° C, which is the operating temperature of the conventional ribs. The variation in the impact response of the newly developed laminated ribs in the temperature range of 18.5° C to 26.6° C was less than 10%.
Technical Paper

Response Corridors of Human Surrogates in Lateral Impacts

2002-11-11
2002-22-0017
Thirty-six lateral PMHS sled tests were performed at 6.7 or 8.9 m/s, under rigid or padded loading conditions and with a variety of impact surface geometries. Forces between the simulated vehicle environment and the thorax, abdomen, and pelvis, as well as torso deflections and various accelerations were measured and scaled to the average male. Mean ± one standard deviation corridors were calculated. PMHS response corridors for force, torso deflection and acceleration were developed. The offset test condition, when partnered with the flat wall condition, forms the basis of a robust battery of tests that can be used to evaluate how an ATD interacts with its environment, and how body regions within the ATD interact with each other.
Technical Paper

Development of a New Biofidelity Ranking System for Anthropomorphic Test Devices

2002-11-11
2002-22-0024
A new biofidelity assessment system is being developed and applied to three side impact dummies: the WorldSID-α, the ES-2 and the SID-HIII. This system quantifies (1) the ability of a dummy to load a vehicle as a cadaver does, “External Biofidelity,” and (2) the ability of a dummy to replicate those cadaver responses that best predict injury potential, “Internal Biofidelity.” The ranking system uses cadaver and dummy responses from head drop tests, thorax and shoulder pendulum tests, and whole body sled tests. Each test condition is assigned a weight factor based on the number of human subjects tested to form the biomechanical response corridor and how well the biofidelity tests represent FMVSS 214, side NCAP (SNCAP) and FMVSS 201 Pole crash environments.
Technical Paper

Pedestrian head impact testing and PCDS reconstructions

2001-06-04
2001-06-0184
Pedestrian research and testing at the NHTSA Vehicle Research and Test Center has recently focused on assessment of proposed ISO and EEVC head impact test procedures, and extension of these procedures to additional vehicle frontal surfaces. In addition to test parameter sensitivity evaluation, reconstruction of PCDS (Pedestrian Crash Data Study) cases with laboratory impact tests and computer simulations has been conducted. This paper presents the results of this research.
Technical Paper

PERFORMANCE EVALUATION OF DUAL STAGE PASSENGER AIR BAG SYSTEMS

2001-06-04
2001-06-0190
A research program was initiated to evaluate the performance of prototype dual stage passenger air bags in terms of both restraint system performance and deployment aggressivity for different size occupants. Variations in inflator partitions, vent hole diameter sizes, and deployment timing were examined. High speed unbelted sled tests were conducted with both 50th percentile male and 5th percentile female Hybrid III adult dummies at 48 kmph; and belted sled tests were conducted at 56 kmph. Low risk deployment tests with child dummies were conducted to evaluate air bag aggressivity. Overall, it was concluded that the dual stage air bag systems under evaluation had improved performance over the baseline single stage systems in terms of providing high speed protection while reducing aggressivity to out-of-position occupants; however, some dual stage systems may require additional occupant detection methodologies to suppress or control inflation.
Technical Paper

NHTSA'S research program for vehicle aggressivity and fleet compatibility

2001-06-04
2001-06-0179
This paper presents an overview of NHTSA's vehicle aggressivity and fleet compatibility research activities. This research program is being conducted in close cooperation with the International Harmonized Research Agenda (IHRA) compatibility research group. NHTSA is monitoring the changing vehicle mix in the U.S. fleet, analyzing crash statistics, and evaluating any implications that these changes may have for U.S. occupant safety. NHTSA is also continuing full-scale crash testing to develop a better understanding of vehicle compatibility and to investigate test methods to assess vehicle compatibility.
Technical Paper

Simulations of large school bus safety restraints~NHTSA

2001-06-04
2001-06-0226
This paper describes computer crash simulations performed by the National Highway Traffic Safety Administration (NHTSA) under the current research and testing activities on large school bus safety restraints. The simulations of a frontal rigid barrier test and comparative dynamic sled testing for compartmentalization, lap belt, and lap/shoulder belt restraint strategies are presented. School bus transportation is one of the safest forms of transportation in the United States. School age children transported in school buses are safer than children transported in motor vehicles of any other type. Large school buses provide protection because of their size and weight. Further, they must meet minimum Federal motor vehicle safety standards (FMVSSs) mandating compartmentalized seating, improved emergency exits, stronger roof structures and fuel systems, and better bus body joint strength.
Technical Paper

Evaluation of the ES-2 dummy in representative side impacts

2001-06-04
2001-06-0096
An upgrade of EUROSID-1, the side impact dummy used in the European Union Side Impact Directive 96/EC/27, was recently developed by TNO to address dummy response issues raised by industrial and governmental bodies, in particular, the flat-top anomaly in the rib deflections. NHTSA is evaluating the ES-2 dummy, the upgraded EUROSID-1, to assess its performance in the FMVSS 214 test configuration. This paper presents results from NHTSA's testing of the ES-2 including high mass pendulum impactor tests using three proposed rib designs, biofidelity sled tests comparing the ES-2 and U.S. SID, and full-scale side impact tests.
Technical Paper

Comparison of Vehicle Structural Integrity and Occupant Injury Potential in Full-frontal and Offset-frontal Crash Tests

2000-03-06
2000-01-0879
The frontal crash standard in the USA specifies that the full front of a vehicle impact a rigid barrier. Subsequently, the European Union developed a frontal crash standard that requires 40 percent of the front of a vehicle to impact a deformable barrier. The present study conducted paired crashes of vehicles using the full-frontal barrier procedure and the 40 percent offset deformable barrier procedure. In part, the study was to examine the feasibility of adding an offset test procedure to the frontal crash standard in the USA. Frontal-offset and full-frontal testing was conducted using both the mid-size (50th percentile male Hybrid III) and the small stature (5th percentile female Hybrid III) dummies. Five vehicle models were used in the testing: Dodge Neon, Toyota Camry, Ford Taurus, Chevrolet Venture and Ford Contour. In the crash tests, all dummies were restrained with the available safety belt systems and frontal air bags.
Technical Paper

NHTSA’s Vehicle Compatibility Research Program

1999-03-01
1999-01-0071
The National Highway Traffic Safety Administration (NHTSA) is conducting a research program to investigate the crash compatibility of passenger cars, light trucks and vans (LTV’s) in vehicle-to-vehicle collisions. NHTSA has conducted a series of eight full-scale vehicle-to-vehicle crash tests to evaluate vehicle compatibility issues. Tests were conducted using four bullet vehicles representing different vehicle classes striking a mid-size sedan in both side and oblique frontal crash configurations. The test results show a good correlation between vehicle aggressivity metrics and injury parameters measured in the struck car for the frontal offset tests, but not for the side impact tests.
Technical Paper

The New Car Assessment Program Has It Led to Stiffer Light Trucks and Vans over the Years?

1999-03-01
1999-01-0064
Since model year 1983, one hundred and seventy five light trucks, vans, and sport utility vehicles (LTVs) have been included in the New Car Assessment Program (NCAP) frontal crash tests. In this frontal test, vehicles are crashed at 35 mph such that the entire front impacts against a rigid, fixed barrier. Instrumented anthropometric dummies are placed in the driver and right front passenger seats. Accelerometers are placed on the vehicle to record the response of the structure during the crash. A number of recent papers have examined the compatibility of LTVs and cars in vehicle-to-vehicle collisions. The studies in these papers, generally, consider three factors for vehicle-to-vehicle compatibility: (1) mass, (2) stiffness, and (3) geometry. On June 5, 1998, Transport Canada and the National Highway Traffic Safety Administration held a forum entitled “Transport-NHTSA International Dialogue on Vehicle Compatibility,” in Windsor, Canada.
Technical Paper

Upper Neck Response of the Belt and Air Bag Restrained 50th Percentile Hybrid III Dummy in the USA's New Car Assessment Program

1998-11-02
983164
Since 1994, the New Car Assessment Program (NCAP) of the National Highway Traffic Safety Administration (NHTSA) has compiled upper neck loads for the belt and air bag restrained 50th percentile male Hybrid III dummy. Over five years from 1994 to 1998, in frontal crash tests, NCAP collected upper neck data for 118 passenger cars and seventy-eight light trucks and vans. This paper examines these data and attempts to assess the potential for neck injury based on injury criteria included in FMVSS No. 208 (for the optional sled test). The paper examines the extent of serious neck injury in real world crashes as reported in the National Automotive Sampling System (NASS). The results suggest that serious neck injuries do occur at higher speeds for crashes involving occupants restrained by belts in passenger cars.
X