Refine Your Search

Topic

Author

Search Results

Technical Paper

Analysis of Human Driver Behavior in Highway Cut-in Scenarios

2017-03-28
2017-01-1402
The rapid development of driver assistance systems, such as lane-departure warning (LDW) and lane-keeping support (LKS), along with widely publicized reports of automated vehicle testing, have created the expectation for an increasing amount of vehicle automation in the near future. As these systems are being phased in, the coexistence of automated vehicles and human-driven vehicles on roadways will be inevitable and necessary. In order to develop automated vehicles that integrate well with those that are operated in traditional ways, an appropriate understanding of human driver behavior in normal traffic situations would be beneficial. Unlike many research studies that have focused on collision-avoidance maneuvering, this paper analyzes the behavior of human drivers in response to cut-in vehicles moving at similar speeds. Both automated and human-driven vehicles are likely to encounter this scenario in daily highway driving.
Technical Paper

Field Demonstration of a Camera/Video Imaging System for Heavy Vehicles - Driver Lane Change Performance Preliminary Results

2010-10-05
2010-01-2020
On-board Camera/Video Imaging Systems (C/VISs) for heavy vehicles display live images to the driver of selected areas to the sides, and in back of the truck's exterior using displays inside the truck cabin. They provide a countermeasure to blind-spot related crashes by allowing drivers to see objects not ordinarily visible by a typical mirror configuration, and to better judge the clearance between the trailer and an adjacent vehicle when changing lanes. The Virginia Tech Transportation Institute is currently investigating commercial motor vehicle (CMV) driver performance with C/VISs through a technology field demonstration sponsored by the National Highway Traffic Safety Administration (NHTSA) and the Federal Motor Carrier Safety Administration (FMCSA). Data collection, which consists of recording twelve CMV drivers performing their daily employment duties with and without a C/VIS for four months, is currently underway.
Technical Paper

Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading

2009-11-02
2009-22-0001
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage deformation. Anterior and superior displacement of the lower ribcage may have contributed to sternal fractures occurring early in the event, at displacement levels below those typically considered injurious, suggesting that fracture risk is not fully described by traditional definitions of chest deformation. The methodology presented here produced novel kinematic data that will be useful in developing biofidelic human models.
Journal Article

Preliminary Evaluation Methodology in Front-Front Vehicle Compatibility

2008-04-14
2008-01-0814
The injury outcome of a front-front two-vehicle crash will be a function of crash-specific, vehicle-specific, and occupant-specific parameters. This paper focuses on a preliminary methodology that was used to evaluate the potential for benefits in making vehicle-specific changes to improve the compatibility of light vehicles across the fleet. In particular, the effect on injury rates of matching vehicle frontal stiffness was estimated. The front-front crash data for belted drivers in the lighter vehicles in the crash from ten years of NASS-CDS data were examined. The frontal stiffness of each vehicle was calculated using data taken during full frontal rigid barrier tests for the U.S. New Car Assessment Program (NCAP), and only crashes coded in the CDS as “no override” were considered.
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Experimental Steering Feel Performance Measures

2004-03-08
2004-01-1074
This paper discusses techniques for estimating steering feel performance measures for on-center and off-center driving. Weave tests at different speeds are used to get on-center performances for a 1994 Ford Taurus, a 1998 Chevrolet Malibu, and a 1997 Jeep Cherokee. New concepts analyzing weave tests are added, specifically, the difference of the upper and lower curves of the hysteresis and their relevance to driver load feel. For the 1997 Jeep Cherokee, additional tests were done to determine steering on-center transition properties, steering flick tests, and the transfer function of handwheel torque feel to handwheel steering input. This transfer function provides steering system stiffness in the frequency domain. The frequency domain analysis is found to be a unique approach for characterizing handwheel feel, in that it provides a steering feel up to maximum steering rate possible by the drivers.
Technical Paper

Analysis of Braking and Steering Performance in Car-Following Scenarios

2003-03-03
2003-01-0283
This paper presents recent results of on-going research to build new maps of driver performance in car-following situations. The novel performance map is comprised of four driving states: low risk, conflict, near crash, and crash imminent - which correspond to advisory warning, crash imminent warning, and crash mitigation countermeasures. The paper addresses two questions dealing with the approach to quantify the boundaries between the driving states: (1) Do the quantified boundaries strongly depend on the dynamic scenario encountered in the driving environment? and (2) Do the quantified boundaries vary between steering and braking driver responses? Specifically, braking and steering driver performances are examined in two car-following scenarios: lead vehicle stopped and lead vehicle moving at lower constant speed.
Technical Paper

Design Considerations for a Compatibility Test Procedure

2002-03-04
2002-01-1022
A major focus of the National Highway Traffic Safety Administration's (NHTSA) vehicle compatibility and aggressivity research program is the development of a laboratory test procedure to evaluate compatibility. This paper is written to explain the associated goals, issues, and design considerations and to review the preliminary results from this ongoing research program. One of NHTSA's activities supporting the development of a test procedure involves investigating the use of an mobile deformable barrier (MDB) into vehicle test to evaluate both the self-protection (crashworthiness) and the partner-protection (compatibility) of the subject vehicle. For this development, the MDB is intended to represent the median or expected crash partner. This representiveness includes such vehicle characteristics as weight, size, and frontal stiffness. This paper presents distributions of vehicle measurements based on 1996 fleet registration data.
Technical Paper

Characterization of CIREN

2001-06-04
2001-06-0024
This paper focuses on the overall structure of the Crash Injury Research and Engineering Network (CIREN), how data are collected, and what makes it unique. It discusses how it can be used to expand and enhance the information in other databases. CIREN is a collaborative effort to conduct research on crashes and injuries at nine Level 1 Trauma Centers which are linked by a computer network. Researchers can review data and share expertise, which will lead to a better understanding of crash injury mechanisms and the design of safer vehicles. CIREN data are being used in outreach and education programs on motor vehicle safety. CIREN outreach and education has already been credited with lifesaving information dissemination.
Technical Paper

Foundations and elements of the NHTSA Thor ALPHA ATD design

2001-06-04
2001-06-0107
Early influences upon Thor ATD development are described, and the path of Thor development is traced up to the release of the current Thor ALPHA ATD design. Since the display of the first Thor ATD prototype at the 15th ESV Conference in Melbourne in 1996, Thor has undergone extensive test and evaluation on an international basis in cooperation with many partner institutions. This paper summarizes some of the lessons learned from this broad test experience, and documents actions which have been undertaken to upgrade the Thor product to ALPHA status in light of this experience.
Technical Paper

Field test of a pedestrian safety zone program for older pedestrians

2001-06-04
2001-06-0104
The objectives of this study were to develop and apply procedures for defining pedestrian safety zones for the older (age 65+) adult and to develop, implement and evaluate a countermeasure program in the defined zones. Zone definition procedures were applied to two cities: Phoenix and Chicago. Extensive countermeasure programs were implemented in both cities. A complete crash-based evaluation was conducted only for the city of Phoenix where data showed significant reductions in zone crashes to 65+ pedestrians over a period in which the city's population and overall pedestrian crashes increased. It was concluded that the zone process resulted in an effective and efficient means of deploying pedestrian countermeasures for the older adult.
Technical Paper

NHTSA'S crashworthiness modelling activities

2001-06-04
2001-06-0178
NHTSA uses a variety of computer modelling techniques to develop and evaluate test methods and mitigation concepts, and to estimate safety benefits for many of NHTSA's research activities. Computer modeling has been particularly beneficial for estimating safety benefits where often very little data are available. Also modeling allows researchers to augment test data by simulating crashes over a wider range of conditions than would otherwise be feasible. These capabilities are used for a wide range of projects from school bus to frontal, side, and rollover research programs. This paper provides an overview of these activities. NHTSA's most extensive modeling research involves developing finite element and articulated mass models to evaluate a range of vehicles and crash environments. These models are being used to develop a fleet wide systems model for evaluating compatibility issues.
Technical Paper

NHTSA'S research program for vehicle aggressivity and fleet compatibility

2001-06-04
2001-06-0179
This paper presents an overview of NHTSA's vehicle aggressivity and fleet compatibility research activities. This research program is being conducted in close cooperation with the International Harmonized Research Agenda (IHRA) compatibility research group. NHTSA is monitoring the changing vehicle mix in the U.S. fleet, analyzing crash statistics, and evaluating any implications that these changes may have for U.S. occupant safety. NHTSA is also continuing full-scale crash testing to develop a better understanding of vehicle compatibility and to investigate test methods to assess vehicle compatibility.
Technical Paper

Rear-end collision warning system field operational test~Status report

2001-06-04
2001-06-0205
This paper provides an overview of a cooperative research program between General Motors Corporation and the National Highway Traffic Safety Administration to conduct a field operational test of a rear-end collision warning system. A description of the system architecture is also presented.
Technical Paper

Reducing the Risk of Driver Injury from Common Steering Control Devices in Frontal Collisions

1999-03-01
1999-01-0759
Steering control devices are used by people who have difficulty gripping the steering wheel. These devices have projections that may extend up to 14 cm toward the occupant. Testing indicated that contact with certain larger steering control devices with tall rigid projections could severely injure a driver in a frontal collision. In order to reduce this injury risk, an alternative, less injurious design was developed and tested. This design, which included replacing unyielding aluminum projections with compliant plastic ones, produced significantly lower peak contact pressure and less damage to the chest of a cadaver test subject, while maintaining the strength necessary to be useful.
Technical Paper

Reverse Engineering Method for Developing Passenger Vehicle Finite Element Models

1999-03-01
1999-01-0083
A methodology to develop full-vehicle representation in the form of a finite element model for crashworthiness studies has been evolved. Detailed finite element models of two passenger vehicles - 1995 Chevy Lumina and 1994 Dodge Intrepid have been created. The models are intended for studying the vehicle’s behavior in full frontal, frontal offset and side impact collisions. These models are suitable for evaluating vehicle performance and occupant safety in a wide variety of impact situations, and are also suitable for part and material substitution studies to support PNGV (Partnership for New Generation of Vehicles) research. The geometry for these models was created by careful scanning and digitizing of the entire vehicle. High degree of detail is captured in the BIW, the front-end components and other areas involved in frontal, frontal offset and side impact on the driver’s side.
Technical Paper

Driver Crash Avoidance Behavior with ABS in an Intersection Incursion Scenario on the Iowa Driving Simulator

1999-03-01
1999-01-1290
The National Highway Traffic Safety Administration (NHTSA) has developed its Light Vehicle Antilock Brake Systems (ABS) Research Program in an effort to determine the cause (s) of the apparent increase in fatal single-vehicle run-off-road crashes as vehicles undergo a transition from conventional brakes to ABS. As part of this program, NHTSA conducted research examining driver crash avoidance behavior and the effects of ABS on drivers’ ability to avoid a collision in a crash-imminent situation. The study described here was conducted on the Iowa Driving Simulator and examined the effects of ABS versus conventional brakes, speed limit, ABS instruction, and time-to-intersection (TTI) on driver behavior and crash avoidance performance. This study found that average, alert drivers do tend to brake and steer in realistic crash avoidance situations and that excessive steering can occur. However, this behavior did not result in a significant number of road departures.
Technical Paper

Driver Crash Avoidance Behavior with ABS in an Intersection Incursion Scenario on Dry Versus Wet Pavement

1999-03-01
1999-01-1288
The National Highway Traffic Safety Administration (NHTSA) has developed its Light Vehicle Antilock Brake Systems (ABS) Research Program in an effort to determine the cause (s) of the apparent increase in fatal single-vehicle run-off-road crashes as vehicles undergo a transition from conventional brakes to ABS. As part of this program, NHTSA conducted research examining driver crash avoidance behavior and the effects of ABS on drivers' ability to avoid a collision in a crash-imminent situation. The study described here was conducted on a test track under dry and wet pavement conditions to examine the effects of ABS versus conventional brakes, ABS brake pedal feedback level, and ABS instruction on driver behavior and crash avoidance performance. This study found that drivers do tend to brake and steer in realistic crash avoidance situations and that excessive steering can occur.
Technical Paper

Test Planning, Analysis, and Evaluation System (Test PAES): A Data Archiving Tool for Engineers and Scientists

1997-02-24
970453
As Intelligent Transportation Systems (ITS) become more prevalent, the need to archive data from field tests becomes more critical. These data can guide the design of future systems, provide an information conduit among the many developers of ITS, enable comparisons across locations and time, and support development of theoretical models of driver behavior. The National Highway Traffic Safety Administration (NHTSA) is interested in such an archive. While a design for an ITS data archive has not yet been developed, NHTSA has supported the enhancement of the Test Planning, Analysis, and Evaluation System (Test PAES), originally developed by Calspan SRL Corporation for the U. S. Air Force Armstrong Laboratory, for possible use in such an archive. On a single screen, Test PAES enables engineering unit data, audio, and video, as well as a vehicle animation, to be time synchronized, displayed simultaneously, and operated with a single control.
X