Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Do Turbulent Premixed Flame Fronts in Spark-Ignition Engines Behave Like Passive Surfaces?

2000-06-19
2000-01-1942
A widely held belief in the combustion community is that the chemical and hydrodynamic structure of a stretched laminar premixed flame can be preserved in a turbulent flow field over a range of conditions collectively known as the flamelet regime, and the homogeneous charge spark-ignition engine combustion falls within the domain of this regime. The major assumption in the laminar flamelet concept as applied to the turbulent premixed flames is that the flame front behaves as a constant-property passive scalar surface, and an increase in the wrinkled flame surface area with increasing turbulence intensity is the dominant mechanism for the observed flame velocity enhancement. The two approaches that have been recently used for estimating a measure of the wrinkled flame surface area in spark-ignition engines and other premixed flames are the flame surface density concept and fractal geometry.
Technical Paper

The Fate of Chlorine and Heavy Metals During Pyrolysis of Automobile Shredder Residue*

1999-03-01
1999-01-0671
One of the major sources of chlorine in automobiles is polyvinyl chloride (PVC). When old discarded automobiles enter the recycling loop by far the largest percent of this material finds its way into the solid waste fraction known as automobile shredder residue (ASR). While the majority of this waste is currently disposed of in landfills new processes are currently being evaluated to recycle and recover the valuable resources contained in this solid waste. Pyrolysis, the thermal cracking of the polymeric materials present in ASR, to recover the petrochemical hydrocarbons is one such technology which is receiving attention. However, like combustion with energy recovery, the pyrolysis process is receiving close scrutiny in terms of its environmental impact. These concerns have centered around the fate of the chlorine and the heavy metals present in the ASR.
Technical Paper

An Assessment of “Pyrolysis” as a Resource Recovery Option for Automobile Shredder Residue

1998-02-23
981163
Pyrolysis, the chemical cracking of organic materials such as polymeric materials represents an innovative technology to recover resources contained in automobile shredder residues (ASR). In this study the technical capabilities, economic viability and environmental impact of pyrolysis as applied to ASR has been investigated. Based upon data provided by pyrolysis equipment suppliers, the pyrolysis of ASR appears to be a viable option to deal with the growing quantities of this material currently being produced. However, the selection of the most appropriate pyrolysis technology is dependant upon local needs and requirements.
X