Refine Your Search

Topic

Author

Search Results

Technical Paper

Effects of Ethanol Blending on the Reactivity and Laminar Flame Speeds of Gasoline, Methanol-to-Gasoline, and Ethanol-to-Gasoline Surrogates

2024-04-09
2024-01-2817
Ethanol blending is one method that can be used to reduce knock in spark ignition engines by decreasing the autoignition reactivity of the fuel and modifying its laminar flame speed. In this paper, the effects of ethanol blending on knock propensity and flame speed of petroleum and low-carbon gasoline fuels is analyzed. To do so, surrogate fuels were formulated for methanol-to-gasoline (MTG) and ethanol-to-gasoline (ETG) based on the fuels’ composition, octane number, and select physical properties; and 0-D and 1-D chemical kinetics simulations were performed to investigate reactivity and laminar flame speed, respectively. Results of MTG and ETG were compared against those of PACE-20, a well-characterized surrogate for regular E10 gasoline. Similarly to PACE-20, blending MTG and ETG with ethanol increases the fuel’s research octane number (RON) and sensitivity.
Technical Paper

Evaluation of Fully Sustainable Low Carbon Gasoline Fuels Meeting Japanese E10 Regular and Premium Octane Specifications

2023-09-29
2023-32-0165
Reducing the carbon emissions associated with ICE- containing vehicles is a complimentary step towards carbon neutrality alongside the introduction of vehicles using newer energy vectors. In this study, the authors investigated emissions and efficiency impact of fully renewable E10-grade gasoline fuels blended with sustainable components at both 90 RON and 96 RON in comparison with reference regular E0 and premium certification gasolines across a range of ICE vehicle applications. Both renewable fuels were blended to the Japan JIS K2022 2012 E10 specification. The study shows very low carbon gasolines are technically feasible and potentially have an important role to play in decarbonizing both new advanced technology ICE vehicles and, critically, the existing ICE vehicle parc in the transition towards a zero emissions future.
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Journal Article

Development of Coated Gasoline Particulate Filter Design Method Combining Simulation and Multi-Objective Optimization

2021-04-06
2021-01-0838
In recent years, GPFs (Gasoline particulate filters) have been installed in gasoline engines to comply with stricter environmental regulations in China and Europe. In particular, coated-GPFs having a catalytic purification function are required to have high conversion performances, high filter efficiencies in the sense of a high collection efficiency, and low pressure loss. It is not easy to design a filter that satisfies all these parameters. Experimental studies are being conducted, but it is costly to study in trial productions. In this technical paper, a GPF design optimization method will be proposed that combines multi-scale simulation, surrogate models by machine learning, and an optimization algorithm. By using this method, a GPF design that minimizes pressure loss while providing high conversion performance and particle collection rates that satisfy current regulations can be created.
Technical Paper

Research of Fuel Components to Enhance Engine Thermal Efficiency Part I: Concepts for Fuel Molecule Candidate

2019-12-19
2019-01-2255
As part of efforts to address climate change and improve energy security, researchers have improved the thermal efficiency of engines by expanding the lean combustion limit. To further expand the lean combustion limit, the authors focused not only on engine technology but the chemical reactivity of various fuel molecules. Furan and anisole were among the fuel molecules selected, based on the idea that promising candidates should enhance the flame propagation speed and have good knocking resistance. Engine testing showed that the lean limit can be expanded by using fuels with the right molecular structures, resulting in higher thermal efficiency.
Journal Article

On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated with Various Gasoline Fuels

2019-12-19
2019-01-2150
The knock-suppression effectiveness of exhaust-gas recirculation (EGR) can vary between implementations that take EGR gases after the three-way catalyst and those that use pre-catalyst EGR gases. A main difference between pre-and post-catalyst EGR gases is the level of trace species like NO, UHC, CO and H2. To quantify the role of NO, this experiment-based study employs NO-seeding in the intake tract for select combinations of fuel types and compression ratios, using simulated post-catalyst EGR gases as the diluent. The four investigated gasoline fuels share a common RON of 98, but vary in octane sensitivity and composition. To enable probing effects of near-zero NO levels, a skip-firing operating strategy is developed whereby the residual gases, which contain trace species like NO, are purged from the combustion chamber. Overall, the effects of NO-seeding on knock are consistent with the differences in knock limits for preand post-catalyst EGR gases.
Journal Article

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Technical Paper

Research of Knocking Deterioration due to Accumulated Carbon Deposits on Piston Surfaces

2019-04-02
2019-01-1141
The quantity of heavy components in fuel is increasing as automotive fuels diversify, and engine oil formulations are becoming more complex. These trends result in the formation of larger amounts of carbon deposits as reaction byproducts during combustion, potentially worsening the susceptibility of the engine to knock [1]. The research described in this paper aimed to identify the mechanism that causes knocking to deteriorate due to carbon deposits in low to medium engine load ranges, which are mainly used when the vehicle drives off and accelerates. With this objective, the cylinder temperature and pressure with and without deposits were measured, and it was found that knocking deteriorates in a certain range of ignition timing.
Technical Paper

The Effect of Gasoline Metallic Additives on Low Speed Pre-Ignition

2018-04-03
2018-01-0936
Methylcyclopentadienyl manganese tricarbonyl (MMT) is used as an octane-enhancing metallic additive for unleaded gasoline which can prevent engine knock by proactive reaction with the hydrocarbon free radicals before starting the auto-ignition of hydrocarbons. However it has been pointed out that MMT causes automotive catalysts clogging and spark plug severely fouling. Therefore, many countries have fuel standards that prohibit or limit the usage of MMT. Nevertheless, some countries still use MMT as there are no restrictions imposed by fuel standards. As mentioned in several papers, metallic additives of engine oil such as calcium cause an abnormal combustion phenomenon called low-speed pre-ignition (LSPI) in turbocharged spark ignition engines. In contrast, the effect of metallic additives of gasoline such as MMT on LSPI has not been studied.
Technical Paper

Development of Low Pressure and High Performance GPF Catalyst

2018-04-03
2018-01-1261
Awareness of environmental protection with respect to the particulate number (PN) in the exhaust emissions of gasoline direct injection (GDI) engine vehicles has increased. In order to decrease the emission of particulate matter (PM), suppressing emissions by improving engine combustion, and/or filtering PM with a gasoline particulate filter (GPF) is effective. This paper describes the improvement of the coated GPF to reduce pressure drop while securing three-way performance and PN filtration efficiency. It was necessary to load a certain amount of washcoat on the GPF to add the three-way function, but this led to an increase in pressure drop that affected engine power. The pressure drop was influenced by the gas permeation properties of the filter wall.
Technical Paper

New Combustion and Powertrain Control Technologies for Fun-to-Drive Dynamic Performance and Better Fuel Economy

2017-03-28
2017-01-0589
Toyota Motor Corporation has developed a new series of engines under the Toyota New Global Architecture (TNGA) design philosophy, which aims to satisfy customer requirements for both fun-to-drive dynamic performance and better fuel economy by adopting a high-speed combustion concept to improve thermal efficiency and specific power. This new engine series achieves a maximum engine thermal efficiency of 40%, a specific power ratio of 60 kW/l, and lower emissions by combining high-speed combustion and a high compression ratio with a high-tumble intake port, high-energy ignition coil, high-pressure multi-hole nozzle direct injector, and new electrical variable valve timing (VVT). The first engine in this series is a new 4-cylinder 2.5-liter gasoline naturally aspirated engine for use in passenger cars alongside a new TNGA 8-speed automatic transmission, which was introduced for minivans and SUVs in the U.S. market in 2016.
Technical Paper

Colorimetric Sensor for Facile Identification of Methanol-Containing Gasoline

2017-03-28
2017-01-1288
Despite the fact that methanol is toxic to human health and causes serious damage to automobile engines and fuel system components, methanol-containing gasoline is becoming popular in some areas. Methanol demonstrates similar chemical properties to ethanol (which is already established as an additive to gasoline), so that it is difficult to identify methanol-containing gasoline without performing proper chemical analysis. In this study, we report a low-cost, portable, and easy-to-operate sensor that selectively changes color in response to methanol contained in gasoline. The colorimetric sensor will be useful for automobile users to avoid methanol-containing gasoline upon refueling.
Technical Paper

Friction Reduction Technology for Low Viscosity Engine Oil Compatible with LSPI Prevention Performance

2016-10-17
2016-01-2276
Increasing numbers of vehicles equipped with downsized, turbocharged engines have been introduced seeking for better fuel economy. LSPI (low speed pre-ignition), which can damage engine hardware, is a potential risk of the engines. We reported that engine oil formulation affects frequency of LSPI events, and formulating magnesium detergents into oil is a promising option to prevent LSPI events. From the viewpoint of achieving better fuel economy by engine oil, lowering viscosity is being required. However, it causes reduced oil film thickness and will expand boundary lubrication condition regions in some engine parts. Hence, a technology to reduce friction under boundary lubrication becomes important.
Technical Paper

The New Toyota Inline 4 Cylinder 1.8L ESTEC 2ZR-FXE Gasoline Engine for Hybrid Car

2016-04-05
2016-01-0684
The engine in the new fourth generation Prius carries over the same basic structure as the 2ZR-FXE used in the third generation and incorporates various refinements to enhance fuel efficiency. Called the ESTEC 2ZR-FXE, the new engine incorporates various fuel efficient technologies to improve combustion characteristics, knocking, and heat management, while also reducing friction. As a result of this meticulous approach to enhancing fuel efficiency, the new engine is the first gasoline engine in the world to achieve a maximum thermal efficiency of 40%. This paper describes the fuel efficient technologies incorporated into this engine.
Technical Paper

Development of Gasoline Injector Cleaner for Port Fuel Injection and Direct Injection

2016-04-05
2016-01-0830
Port fuel injection (PFI) injector and direct fuel injection (DI) injector clogging from deposits caused by poor fuel quality, is a concern in emerging countries. Then DI injector deposits are sometimes cleaned by injector cleaners in such situation. However deposit cleaners for PFI injectors have not been developed, because of the lack of research of PFI injector deposits. Through chemical analysis, this study showed them to be water-soluble deposits. Subsequently success was achieved in developing a new gasoline injector cleaner applicable to injector deposits in both types of injectors, through optimization of a surface active agent.
Technical Paper

Development of the Fuel Cell System in the Mirai FCV

2016-04-05
2016-01-1185
Toyota Motor Corporation (TMC) has been developing fuel cell (FC) system technology since 1992. In 2008 the Toyota "FCHV-adv" was released as part of a demonstration program. It established major improvements in key performance areas such as cold start/drive capability, efficiency, driving range, and durability. However, in order to facilitate the commercial widespread adoption of fuel cell vehicles (FCVs), improvements in performance and further reductions in size and cost were required.In December 2014, Toyota launched the world’s first commercially available fuel cell vehicle (FCV) the "Mirai" powered by the Toyota Fuel Cell System (TFCS). Simplicity, reliability and efficiency have been significantly improved within the Toyota TFCS. As a result, the Mirai has become an attractive vehicle which could lead the way towards full-scale popularization of FCVs.
Technical Paper

Mechanism of Turbocharger Coking in Gasoline Engines

2015-09-01
2015-01-2029
Turbocharged downsized gasoline engines have been widely used in the market as one of the measures to improve fuel economy. Coking phenomena in the lubricating circuit of the turbocharger unit is a well-known issue that may affect turbocharger efficiency and durability. Laboratory rig test such as ASTM D6335 (TEOST 33C) has been used to predict this phenomenon as a part of engine oil performance requirements. On the other hand, laboratory tests sometimes have difficulty reproducing the actual mechanism of coking caused by engine oil degradation. Accumulation of insoluble material is one of the important gasoline engine oil degradation modes. The influence of temperature and insoluble concentration were investigated based on actual used engine oils collected in the field.
Technical Paper

Effect of Fuel Components on Engine Abnormal Combustion

2012-04-16
2012-01-1276
These days, improving fuel economy is essential from the view point of energy security and global warming. Engine technologies, such as high compression engines and turbocharged engines, have already been introduced into the market. Furthermore new technologies like lean boosted engines are now being developed. However, these engines are susceptible to abnormal combustion like knocking, auto-ignition, and pre-ignition at low or high engine speeds, because these engines are run at higher combustion pressures and temperatures compared to naturally aspirated engines. It is well known that fuels have some affect on combustion characteristics. This paper examines the effects of fuel characteristics on various types of abnormal combustion. The results show that temperature and pressure have a direct impact on abnormal combustion.
Technical Paper

Engine Thermal Control for Improving the Engine Thermal Efficiency and Anti-Knocking Quality

2012-04-16
2012-01-0377
In recent years, improving the engine thermal efficiency is strongly required. To enhance the engine thermal efficiency, it is important to improve the engine anti-knock quality. Technologies for modifying engine cooling have been developed to improve anti-knocking quality of engines. However, excessive improvement of engine cooling leads to an increase in cooling heat loss. Therefore, it is necessary to clarify the effects of the temperature of each part of the engine such as engine head-cylinder, cylinder-liner, and piston on knocking and cooling heat loss. In this paper, computer aided engineering (CAE) is used to predict the effects of each part of the engine on engine knocking and cooling heat loss. Firstly, the amount of heat energy that air-fuel mixture receives from engine cylinder-head, cylinder-liner, and piston is calculated during the intake stroke. The result shows that the cylinder-liner contributes largest heat energy to air-fuel mixture, especially the exhaust side.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
X