Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Acceleration Sound Preference from a CVT Perspective

2014-11-04
2014-36-0798
The fuel economy benefits of Continuously Variable Transmission (CVT) technology have led to a steady growth in their adoption since the 1990's that is likely to continue despite the competition from Dual Clutch Transmission (DCT) & Automated Manual Transmission (AMT) technology. Even though CVTs provide a smoother driving experience due to their “shift-free” operation, general market feedback indicates some level of consumer dissatisfaction in the area of acceleration sound quality. This is particularly evident in the sub-compact and compact vehicle segments that feature small four cylinder engines with cost/weight limited sound packaging. The dissatisfaction with the acceleration sound quality is primarily linked to the non-linear relationship between engine RPM and vehicle speed that is inherent to CVTs and is often referred to as “rubber-band” feel.
Technical Paper

HEV Application of Shaking Vibration Control System Based on Advanced Motor Control

2012-04-16
2012-01-0622
A hybrid system that has been put on the market by Nissan Motor Company was configured by removing the torque convertor with a lockup clutch from a conventional 7-speed automatic transmission and installing a clutch and a motor in its place. This hybrid electric vehicle (HEV) has a simple structure and is expected to improve fuel economy and responsiveness because it eliminates the torque convertor. One issue for this system is that an abrupt change in the input torque could cause torsional vibration of the drive shaft, resulting in a severe degradation of ride comfort. To solve this problem, an original vibration control system that was adapted for the mass-produced LEAF electric vehicle was also adapted for use on this HEV fitted with an engine and a 7-speed automatic transmission. This control system enables the hybrid vehicle to generate maximum motor torque at launch and also provides significant advantages for vehicle design.
Technical Paper

Development of NV Performance of New Rear Suspension and New Drivetrain for Rear-Drive Vehicles

2012-04-16
2012-01-0729
This paper describes the design measures taken to develop the noise and vibration performance of a new rear suspension and a new drivetrain system for rear-wheel-drive vehicles. The new rear suspension is designed to solve trade-off issues between road noise and handling performance. Despite higher drive torque, booming noise is greatly reduced by the new rear suspension and drivetrain without increasing the vehicle weight or sacrificing fuel economy.
Technical Paper

Development of a Two-Stage Variable Displacement Vane Oil Pump

2012-04-16
2012-01-0408
Various technologies for improving the environmental performance of vehicles have been vigorously developed in the automotive industry in recent years. In this regard, the core technologies for improving vehicle fuel economy are still mostly aimed at internal combustion engines. This paper presents a new variable displacement oil pump (VDOP) that was adopted for enhancing the fuel economy of a newly developed 1.2-liter three-cylinder supercharged gasoline direct injection engine. It describes the purpose, benefits, performance and variable displacement principle of the VDOP. Published papers concerning the development of the new engine, the friction reduction technologies it embodies and additional details of the mechanisms incorporated in the new oil pump are cited in the references for the further information of the reader.
Technical Paper

Advanced Combustion Performance for High Efficiency in New I3 1.2L Supercharged Gasoline Engine by Effective Use of 3D Engine Simulation

2012-04-16
2012-01-0422
A new 1.2L inline 3-cylinder supercharged gasoline engine was developed to improve fuel efficiency and to meet EURO 5 emission regulations. The engine was designed with a high compression ratio, heavy exhaust gas recirculation (EGR), and a long stroke to improve fuel efficiency. The Miller cycle and a direct fuel injection system were applied to this engine in order to mitigate the occurrence of knock due to the high compression ratio. In addition, a supercharging system was adopted to compensate for the decline in charging efficiency due to the Miller cycle. The design of a direct injection gasoline engine involves a lot of problems such as reduction of oil dilution, stabilization of combustion at first idle retarded, improvement of air-fuel mixing homogeneity, and strengthening of the gas flow. It is hard to resolve these problems independently due to their complexities and difficult nature. Reducing wall wetting by the fuel spray can improve oil dilution in a small engine.
Technical Paper

Development of New I3 1.2L Supercharged Gasoline Engine

2012-04-16
2012-01-0415
This paper describes a new 1.2-liter three cylinder gasoline engine named HR12DDR, with the target to achieve the lowest level CO2 in the European B-segment market and also, to satisfy the customer's driving pleasure through high output performance. This engine is developed with the consideration of meeting further strict regulations in the years ahead and of the possibility of being an alternative powertrain of diesel in the future as well. As a first step this engine was applied on the European Nissan Micra in 2011; achieving 95g/km CO2 emissions(NEDC mode). This low fuel consumption was realized mainly through technologies which scope to maximize thermal efficiency with high compression ratio, and to minimize the mechanical friction loss. The combustion was optimized by Direct injection (DI)system. To obtain the better fuel economy performance without sacrificing high output, we chose the supercharger system with bypass valve and electromagnetic clutch.
Technical Paper

Balance Weight-Saving with Performance of Acoustic Isolation Using Hybrid SEA Model

2012-04-16
2012-01-0216
Recently, urgent needs have arisen for improving the fuel economy of passenger cars. To improve the fuel comsumption, it is necessary to develop a technology that can improve fuel efficiency and weight-saving. This paper describes the development of a soundproof package to balance weight-saving with performance of acoustic isolation used to reduce engine noise. First, we developed a hybrid statistical energy analysis (HSEA) model to evaluate the performance. Second, by using the HSEA model, we (1) analyzed the power flow and dominant path from noise source to interior cavity, (2) extracted efficient sections such as dash, dash penetration parts, and floor so as to improve the performance. Using the above process, we developed a soundproof package that improves the performance without increasing the weight. As a result, we balanced weight-saving with performance of acoustic isolation using the HSEA model.
Technical Paper

Development of Integrated Powertrain Simulation for Hybrid Electric Vehicles Considering Total Energy Management

2012-04-16
2012-01-1012
Hybrid powertrain technology, which combines an internal combustion engine and an electric motor as power sources, is penetrating auto markets as a practical approach for reducing vehicle fuel consumption and exhaust emissions. This paper describes the development of an integrated powertrain simulation technology for predicting the fuel economy and exhaust emissions of hybrid electric vehicles with high accuracy and computation speed. Primary paths of kinetic, electric, chemical and thermal energies and their management were modeled. The predicted exhaust emissions and temperatures of the coolant and lubrication oil agreed well with experimental data in various vehicle driving conditions. This simulation was used to study an air-fuel ratio control strategy for reducing NOx at engine restart and to examine an exhaust heat recovery method for reducing fuel consumption and exhaust emissions under cold start conditions.
Journal Article

Development of a New Multi-link Rear Suspension

2012-04-16
2012-01-0978
The requirements of suspension systems have become increasingly complex in recent years due to the expansion of global markets and diversification of the conditions under which vehicles are used in different parts of the world. It is also becoming increasingly important to ensure that vehicles offer the secure handling stability which are expected by drivers, but can also provide an adequate level of ride comfort when driving on a wide diversity of road surfaces in all parts of the world. From an environmental viewpoint, it is also essential to achieve weight reductions for better fuel economy. To meet these wide-ranging requirements, we have developed a new multi-link rear suspension that has a simple link configuration and a lower link that features a connecting bushing mechanism developed by Nissan.
X