Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Deep Learning-based Queue-aware Eco-Approach and Departure system for Plug-in Hybrid Electric Bus at signalized intersections: a simulation study

2020-04-14
2020-01-0584
Eco-Approach and Departure (EAD) has been considered as a promising eco-driving strategy for vehicles traveling in an urban environment, where signal phase and timing (SPaT) and geometric intersection description (GID) information are well utilized to guide the vehicles passing through the intersection in a most energy efficient manner. Previous studies by the authors formulated the optimal trajectory planning problem as finding the shortest path on a graph model where the nodes define the reachable states of the host vehicle (e.g., speed, location) at each time step, the links govern the state reachability from previous time step, and the link costs represent the energy consumption rate due to state transition. This method is effective in energy saving, but its computation efficiency can be enhanced by machine learning techniques.
Technical Paper

Engine-Aftertreatment in Closed-Loop Modeling for Heavy Duty Truck Emissions Control

2019-04-02
2019-01-0986
An engine-aftertreatment computational model was developed to support in-loop performance simulations of tailpipe emissions and fuel consumption associated with a range of heavy-duty (HD) truck drive cycles. For purposes of this study, the engine-out exhaust dynamics were simulated with a combination of steady-state engine maps and dynamic correction factors that accounted for recent engine operating history. The engine correction factors were approximated as dynamic first-order lags associated with the thermal inertia of the major engine components and the rate at which engine-out exhaust temperature and composition vary as combustion heat is absorbed or lost to the surroundings. The aftertreatment model included catalytic monolith components for diesel exhaust oxidation, particulate filtration, and selective catalytic reduction of nitrogen oxides (NOx) with urea.
Technical Paper

Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

2017-03-28
2017-01-0183
It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements.
Technical Paper

Thermal Storage System for Electric Vehicle Cabin Heating - Component and System Analysis

2016-04-05
2016-01-0244
Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs).
Technical Paper

Nondestructive X-ray Inspection of Thermal Damage, Soot and Ash Distributions in Diesel Particulate Filters

2009-04-20
2009-01-0289
We describe novel results of ongoing research at 3DX-RAY Ltd and Oak Ridge National Laboratory using new, commercially available, nondestructive x-ray techniques to make engineering measurements of diesel particulate filters (DPF). Nondestructive x-ray imaging and data-analysis techniques were developed to detect and visualize the small density changes corresponding to the addition of substances such as soot and ash to DPF monoliths. The usefulness of this technique was explored through the analysis of field-aged samples, accelerated-aged samples, and the synthetic addition of ash and soot to clean DPF samples. We demonstrate the ability to visualize and measure flaws in substrates and quantify the distribution of ash and soot within the DPF. We also show that the technology is sensitive enough for evaluations of soot and ash distribution and thermal damage without removing the DPF from its metal casing.
Journal Article

Effects of Fuel Physical Properties on Diesel Engine Combustion using Diesel and Bio-diesel Fuels

2008-04-14
2008-01-1379
A computational study using multi-dimensional CFD modeling was performed to investigate the effects of physical properties on diesel engine combustion characteristics with bio-diesel fuels. Properties of typical bio-diesel fuels that were either calculated or measured are used in the study and the simulation results are compared with those of conventional diesel fuels. The sensitivity of the computational results to individual physical properties is also investigated, and the results provide information about the desirable characteristics of the blended fuels. The properties considered in the study include liquid density, vapor pressure, surface tension, liquid viscosity, liquid thermal conductivity, liquid specific heat, latent heat, vapor specific heat, vapor diffusion coefficient, vapor viscosity and vapor thermal conductivity. The results show significant effects of the fuel physical properties on ignition delay and burning rates at various engine operating conditions.
Technical Paper

On the Nature of Cyclic Dispersion in Spark Assisted HCCI Combustion

2006-04-03
2006-01-0418
We report experimental observations of cyclic combustion variability during the transition between propagating flame combustion and homogeneous charge compression ignition (HCCI) in a single-cylinder, stoichiometrically fueled, spark-assisted gasoline engine. The level of internal EGR was controlled with variable valve actuation (VVA), and HCCI combustion was achieved at high levels of internal EGR using the VVA system. Spark-ignition was used for conventional combustion and was optionally available during HCCI. The transition region between purely propagating combustion and HCCI was mapped at multiple engine speeds and loads by incrementally adjusting the internal EGR level and capturing data for 2800 sequential cycles. These measurements revealed a complex sequence of high COV, cyclic combustion variations when operating between the propagating flame and HCCI limits.
X