Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Methodology for Active Force Cancellation in Automotive Application Using Mass Imbalance & Centrifugal Force Generation (CFG) Principle

2024-04-09
2024-01-2343
A variety of structures resonate when they are excited by external forces at, or near, their natural frequencies. This can lead to high deformation which may cause damage to the integrity of the structure. There have been many applications of external devices to dampen the effects of this excitation, such as tuned mass dampers or both semi-active and active dampers, which have been implemented in buildings, bridges, and other large structures. One of the active cancellation methods uses centrifugal forces generated by the rotation of an unbalanced mass. These forces help to counter the external excitation force coming into the structure. This research focuses on active force cancellation using centrifugal forces (CFG) due to mass imbalance and provides a virtual solution to simulate and predict the forces required to cancel external excitation to an automotive structure. This research tries to address the challenges to miniaturize the CFG model for a body-on-frame truck.
Technical Paper

Optimal Control Co-Design of a Parallel Electric-Hydraulic Hybrid Vehicle

2024-04-09
2024-01-2154
This paper presents an optimal control co-design framework of a parallel electric-hydraulic hybrid powertrain specifically tailored for heavy-duty vehicles. A pure electric powertrain, comprising a rechargeable lithium-ion battery, a highly efficient electric motor, and a single or double-speed gearbox, has garnered significant attention in the automotive sector due to the increasing demand for clean and efficient mobility. However, the state-of-the-art has demonstrated limited capabilities and has struggled to meet the design requirements of heavy-duty vehicles with high power demands, such as a class 8 semi-trailer truck. This is especially evident in terms of a driving range on one battery charge, battery charging time, and load-carrying capacity. These challenges primarily stem from the low power density of lithium-ion batteries and the low energy conversion efficiency of electric motors at low speeds.
Technical Paper

Low-Cost Open-Source Data Acquisition for High-Speed Cylinder Pressure Measurement with Arduino

2024-04-09
2024-01-2390
In-cylinder pressure measurement is an important tool in internal combustion engine research and development for combustion, cycle performance, and knock analysis in spark-ignition engines. In a typical laboratory setup, a sub crank angle resolved (typically between 0.1o and 0.5o) optical encoder is installed on the engine crankshaft, and a piezoelectric pressure transducer is installed in the engine cylinder. The charge signal produced by the transducer due to changes in cylinder pressure during the engine cycle is converted to voltage by a charge amplifier, and this analog voltage is read by a high-speed data acquisition (DAQ) system at each encoder trigger pulse. The high speed of engine operation and the need to collect hundreds of engine cycles for appropriate cycle-averaging requires significant processor speed and memory, making typical data acquisition systems very expensive.
Technical Paper

High Dimensional Preference Learning: Topological Data Analysis Informed Sampling for Engineering Decision Making

2024-04-09
2024-01-2422
Engineering design-decisions often involve many attributes which can differ in the levels of their importance to the decision maker (DM), while also exhibiting complex statistical relationships. Learning a decision-making policy which accurately represents the DM’s actions has long been the goal of decision analysts. To circumvent elicitation and modeling issues, this process is often oversimplified in how many factors are considered and how complicated the relationships considered between them are. Without these simplifications, the classical lottery-based preference elicitation is overly expensive, and the responses degrade rapidly in quality as the number of attributes increase. In this paper, we investigate the ability of deep preference machine learning to model high-dimensional decision-making policies utilizing rankings elicited from decision makers.
Technical Paper

Design and Simulation of Battery Enclosure for an Electric Vehicle Application

2024-04-09
2024-01-2738
Making a sturdy battery box or enclosure is one of the many challenging issues that the expansion of electrification entails. Many characteristics of an effective battery housing contribute to the safety of passengers and shield the battery from the harsh environment created by vibrations and shocks due to varying road profiles in the vehicle. This results in stress and deformations of different degrees. There is a need to understand and develop a correlation between structural performance and lightweight design of battery enclosure as this can increase the range of the drive and the life cycle of a battery pack. This paper investigates the following points: I) A conceptualized CAD model of battery enclosure is developed to understand the design parameters such as utilization of different material for strength and structural changes for performance against vibration and strength.
Technical Paper

Amplitude Method for Detecting Debonding in Stack Bond Adhesive

2024-03-13
2024-01-5033
Adhesively bonded joints have been applied in the automotive industry for the past few decades due to their advantages such as higher fatigue resistance, light weight, capability of joining dissimilar materials, good energy absorption, and high torsional stiffness for overall body structure. They also provide an effective seal against noise and vibration at a low cost. There exists the challenge of defining the fatigue characteristics of adhesive joints under cyclic loading conditions, and conventional methods have limitations in detecting the crack initiation of a bonded joint. This study introduces a method of detecting crack initiation by using the frequency method. It is found that stiffness change in the system is highly correlated to change in natural frequencies. By monitoring the change in natural frequencies, the crack initiation can be detected.
Technical Paper

Tooth Mesh Characterization of Spur Gear Pairs with Surface Pitting Damage

2023-04-11
2023-01-0458
A finite element/contact mechanics (FE/CM) method is used to determine the tooth contact forces, static transmission error, and tooth pair stiffnesses for spur gear pairs that have pitting damage. The pitting damage prevents portions of the tooth surface from carrying load, which results in meaningfully different contact pressure distribution on the gear teeth and deformations at the mesh. Pits of elliptical shape are investigated. Parametric analyses are used to investigate the effect of pit width (along the tooth face) and height (along the tooth profile) on the gear tooth mesh interface. Pitting damage increases static transmission error and decreases tooth pair stiffness. Tooth contact forces differ only in the portions of the mesh cycle when multiple pairs of teeth are in contact and share the transmitted load. Pitting damage does not change the loads when only a single pair of teeth are in contact.
Journal Article

Accelerating In-Vehicle Network Intrusion Detection System Using Binarized Neural Network

2022-03-29
2022-01-0156
Controller Area Network (CAN), the de facto standard for in-vehicle networks, has insufficient security features and thus is inherently vulnerable to various attacks. To protect CAN bus from attacks, intrusion detection systems (IDSs) based on advanced deep learning methods, such as Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), have been proposed to detect intrusions. However, those models generally introduce high latency, require considerable memory space, and often result in high energy consumption. To accelerate intrusion detection and also reduce memory requests, we exploit the use of Binarized Neural Network (BNN) and hardware-based acceleration for intrusion detection in in-vehicle networks. As BNN uses binary values for activations and weights rather than full precision values, it usually results in faster computation, smaller memory cost, and lower energy consumption than full precision models.
Technical Paper

EV Battery Power Management for Supplying Smart Loads in Power Distribution Systems

2022-03-29
2022-01-0171
The number of EVs are increasing in power distribution systems every day. This research analyses different penetration levels of electric vehicles in power distribution systems to provide stable energy for smart devices and observes its impacts on operational costs and environmental emissions. The supply of EV power is determined based on smart device consumption by optimal energy management of EV batteries so that both the utilities and the car owner get benefits. Utilities can save energy by reducing system loss, while EV owners can earn money by selling it to utilities at their convenient time for smart device operations. The PG&E 69-bus distribution system is used for the simulation and case studies. Case studies in this research show how the power management of EV's batteries charging and discharging characteristics benefits both utilities and EV owners. The uncertainty of the driving pattern of EVs is also considered in the research to get more accurate results.
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
Technical Paper

Large-Angle Full-Field Strain Measurement of Small-Sized Objects Based on the Multi-Camera DIC Test System

2022-03-29
2022-01-0274
Digital Image Correlation (DIC) technology is a powerful tool in the field of experimental mechanics to obtain the full-field deformation/strain information of an object. It has been rapidly applied in industry in recent years. However, for the large-angle full-field strain measurement of small-sized cylindrical objects, it’s still a challenge to the DIC accurate measurement due to its small size and curved surface. In this paper, a measurement method based on the multi-camera DIC system is proposed to study the compressive performance of small-sized cylindrical materials. Three cameras form two stereo DIC measurement systems (1 and 2 cameras, and 2 and 3 cameras), each of which measures a part of the object. By calibrating three cameras at the same time, two stereos DIC coordinate systems can be unified to one coordinate system. Then match the two sets of DIC measurement data together to achieve large-angle measurement of the cylindrical surface.
Technical Paper

EV Battery Charger Impacts on Power Distribution Transformers Due to Harmonics

2022-03-29
2022-01-0750
Increasing the demand for EV charging has increased the burden and accretion of the power quality issues. Harmonic voltages and currents have a significant negative influence on power system components, specifically power transformers. The voltage and current harmonics created by EV chargers and their impacts on power transformers have been discussed in this paper, and an approach is proposed to reduce such harmonics in the system. For this purpose, firstly, the total harmonic distortion (THD) of a typical EV charger is evaluated. Then an analysis is performed utilizing Fast Fourier Transform (FTT) to extract individual harmonics. To this end, this paper addresses the power quality issues on the power transformers by implementing a passive filter. The harmonic voltages and currents were measured on different levels of charging loads. The simulation results show that more than 30% of total harmonic distortions were reduced to 1.16% using a passive filter.
Journal Article

Damage-Induced Dynamic Tooth Contact Forces in Spur Gears with Root Cracks

2022-03-29
2022-01-0642
A finite element/contact mechanics formulation is used to analyze the dynamic tooth forces that arise from damage-induced vibrations in spur gear pairs. Tooth root crack damage of varying sizes are analyzed for a wide range of speeds that include resonant gear speeds. The added localized compliance from tooth root crack damage leads to a re-distribution of the forces on the individual gear teeth in mesh. At speeds away from resonance, smaller dynamic forces occur on the damaged tooth and larger dynamic forces occur on the tooth that engages immediately after it. These dynamic tooth contact forces cause additional transient dynamic response in the gear pair. For certain speeds and sufficiently large tooth root cracks, the damage-induced dynamic response causes large enough vibration that tooth contact loss nonlinearity occurs. For some speeds near resonance, the damage-induced vibrations cause teeth that normally lose contact to remain in contact due to vibration.
Technical Paper

The Study of the Effective Contact Area of Suction Cup

2021-04-06
2021-01-0298
As the industry moves further into the automotive age, the failure of the cup during the transportation of the parts during the assembly process is costly. Among them, the effective contact area of the suction cup could influence the significant availability of the pressure, which is necessary to investigate the truth. The essential objective for this research is trying to improve the effectiveness of the suction cups during gripers work in company’s industry. In this research, the real work condition is simulated by the experimental setup to find the influence of the effective contact area. In this paper, the proper methodology to measure the effective area by testing different size cups under different conditions is described. The results are verified by the digital image correlation (DIC) technique.
Technical Paper

Tooth Mesh Modeling of Spur Gears with Tooth Root Crack Damage Using a Finite Element/Contact Mechanics Approach

2021-04-06
2021-01-0699
Motivated by accurate representations in gear dynamics models, this work analyzes the force-deflection relationship between spur gear pairs when the gear teeth have tooth root cracks. A finite element/contact mechanics approach is used to accurately capture the elastic deformations of the gear mesh incorporating kinematic gear motion; elastic deflections of the teeth, root, and blank; and elastic contact between the mating gear teeth. Tooth root crack damage of fixed sizes are analyzed, and the resulting static transmission error and mesh stiffness are calculated. These FE/CM model outputs are relatively insensitive to important gear crack geometry, including the initial crack location, the path it follows, and its final location. Crack-induced changes in static transmission error and mesh stiffness are driven by the remaining amount of the tooth that is healthy. Calculations of average-slope and local-slope mesh stiffness are included because both are used in gear dynamic models.
Technical Paper

Analyzing the Impact of Electric Vehicles Charging Stations on Power Quality in Power Distribution Systems

2021-04-06
2021-01-0199
Integration of electric vehicles (EV) in power distribution systems reduces emissions that contribute to climate changes and improves public health by reducing ecological damage. Even though EVs significantly impact reducing carbon emissions and less dependency on hydrocarbon-based generators, they could negatively impact power systems, especially power quality. This paper analyzes electric vehicle charging stations’ impact on power quality concerning the voltage and current analysis of the harmonic distortion. As a case study, a sample system has been chosen, and a charging station is integrated into the system to investigate the harmonic impacts on the system. Finally, various mitigation techniques to eliminate the harmonics and minimize EVs’ adverse impacts on power quality in power distribution systems have been discussed.
Technical Paper

A Fresh Perspective on Hypoid Duty Cycle Severity

2021-04-06
2021-01-0707
A new method is demonstrated for rating the “severity” of a hypoid gear set duty cycle (revolutions at torque) using the intercept of T-N curve to support gearset selection and sizing decision across vehicle programs. Historically, it has been customary to compute a cumulative damage (using Miner's Rule) for a rotating component duty cycle given a T-N curve slope and intercept for the component and failure mode of interest. The slope and intercept of a T-N curve is often proprietary to the axle manufacturer and are not published. Therefore, for upfront sizing and selection purposes representative T-N properties are used to assess relative component duty cycle severity via cumulative damage (non-dimensional quantity). A similar duty cycle severity rating can also be achieved by computing the intercept of the T-N curve instead of cumulative damage, which is the focus of this study.
Journal Article

Review and Comparison of Different Multi-Channel Spatial-Phase Shift Algorithms of Electronic Speckle Pattern Interferometry

2021-04-06
2021-01-0304
Electronic Speckle Pattern Interferometry (ESPI) is the most sensitive and accurate method for 3D deformation measurement in micro and sub micro-level. ESPI measures deformation by evaluating the phase difference of two recorded speckle interferograms under different loading conditions. By a spatial phase shift technique, ESPI allows for the rapid, accurate and continuous 3D deformation measurement. Multi-channel and carrier frequency are the two main methods of spatial phase shift. Compared with carrier frequency method, which is subject to the problem of spectrum aliasing, multi-channel method is more flexible in use. For extracting the phase value of speckles, four-step algorithm and five-step arbitrary phase algorithm are commonly used. Different algorithms have different spatial resolution, operational requirements, and phase image quality.
Technical Paper

Computation of Safety Architecture for Electric Power Steering System and Compliance with ISO 26262

2020-04-14
2020-01-0649
Technological advancement in the automotive industry necessities a closer focus on the functional safety for higher automated driving levels. The automotive industry is transforming from conventional driving technology, where the driver or the human is a part of the control loop, to fully autonomous development and self-driving mode. The Society of Automotive Engineers (SAE) defines the level 4 of autonomy: “Automated driving feature will not require the driver to take over driving control.” Thus, more and more safety related electronic control units (ECUs) are deployed in the control module to support the vehicle. As a result, more complexity of system architecture, software, and hardware are interacting and interfacing in the control system, which increases the risk of both systematic and random hardware failures.
Technical Paper

EV Penetration Impacts on Environmental Emissions and Operational Costs of Power Distribution Systems

2020-04-14
2020-01-0973
This research assesses the integration of different levels of electric vehicles (EVs) in the distribution system and observes its impacts on environmental emissions and power system operational costs. EVs can contribute to reducing the environmental emission from two different aspects. First, by replacing the traditional combustion engine cars with EVs for providing clean and environment friendly transportation and second, by integrating EVs in the distribution system through the V2G program, by providing power to the utility during peak hours and reducing the emission created by hydrocarbon dependent generators. The PG&E 69-bus distribution system (DS) is used to simulate the integration of EVs and to perform energy management to assess the operational costs and emissions. The uncertainty of driving patterns of EVs are considered in this research to get more accurate results.
X