Refine Your Search

Topic

Search Results

Technical Paper

Real Time 2D Pose Estimation for Pedestrian Path Estimation Using GPU Computing

2019-04-02
2019-01-0887
Future fully autonomous and partially autonomous cars equipped with Advanced Driver Assistant Systems (ADAS) should assure safety for the pedestrian. One of the critical tasks is to determine if the pedestrian is crossing the road in the path of the ego-vehicle, in order to issue the required alerts for the driver or even safety breaking action. In this paper, we investigate the use of 2D pose estimators to determine the direction and speed of the pedestrian crossing the road in front of a vehicle. Pose estimation of body parts, such as right eye, left knee, right foot, etc… is used for determining the pedestrian orientation while tracking these key points between frames is used to determine the pedestrian speed. The pedestrian orientation and speed are the two required elements for the basic path estimation.
Technical Paper

Finite Element Contact and Wear Analysis of Stator and Rotor in a Screw Pump

2019-04-02
2019-01-0813
The aim of this study is to develop a methodology to estimate the wear between rotor and stator of the screw pump, under static and transient conditions, respectively, by using a two- dimensional finite element model. Because the velocity and the contact pressure were varied at the point of contact, it made the problem nonlinear and complicated, as the plane motion of the rotor in the stator. A geometry analysis, which incorporated a finite element method is developed to solve the problem. The variation of wear with frequency, friction coefficient and also with interference is presented and discussed.
Technical Paper

Modified Experimental Approach to Investigate Coefficient of Friction and Wear under Lubricated Fretting Condition by Utilizing SRV Test Machine

2018-04-03
2018-01-0835
Fretting is an important phenomenon that happens in many mechanical parts. It is the main reason in deadly failures in automobiles, airliners, and turbine engines. The damage is noticed between two surfaces clamped together by bolts or rivets that are nominally at rest, but have a small amplitude oscillation because of vibration or local cyclic loading. Fretting damage can be divided into two types. The first type is the fretting fatigue damage where a crack would initiate and propagate at specific location at the interface of the mating surfaces. Cracks usually initiate in the material with lower strength because of the local cyclic loading conditions which eventually lead to full failure. The second type is the fretting wear damage because of external vibration. Researchers have investigated this phenomenon by theoretical modeling and experimental approaches. Although a lot of research has been done on fretting damage, some of the parameters have not been well studied.
Technical Paper

CAN Crypto FPGA Chip to Secure Data Transmitted Through CAN FD Bus Using AES-128 and SHA-1 Algorithms with A Symmetric Key

2017-03-28
2017-01-1612
Robert Bosch GmBH proposed in 2012 a new version of communication protocol named as Controller area network with Flexible Data-Rate (CANFD), that supports data frames up to 64 bytes compared to 8 bytes of CAN. With limited data frame size of CAN message, and it is impossible to be encrypted and secured. With this new feature of CAN FD, we propose a hardware design - CAN crypto FPGA chip to secure data transmitted through CAN FD bus by using AES-128 and SHA-1 algorithms with a symmetric key. AES-128 algorithm will provide confidentiality of CAN message and SHA-1 algorithm with a symmetric key (HMAC) will provide integrity and authentication of CAN message. The design has been modeled and verified by using Verilog HDL – a hardware description language, and implemented successfully into Xilinx FPGA chip by using simulation tool ISE (Xilinx).
Journal Article

Time-Dependent Reliability-Based Design Optimization of Vibratory Systems

2017-03-28
2017-01-0194
A methodology for time-dependent reliability-based design optimization of vibratory systems with random parameters under stationary excitation is presented. The time-dependent probability of failure is computed using an integral equation which involves up-crossing and joint up-crossing rates. The total probability theorem addresses the presence of the system random parameters and a sparse grid quadrature method calculates the integral of the total probability theorem efficiently. The sensitivity derivatives of the time-dependent probability of failure with respect to the design variables are computed using finite differences. The Modified Combined Approximations (MCA) reanalysis method is used to reduce the overall computational cost from repeated evaluations of the system frequency response or equivalently impulse response function. The method is applied to the shape optimization of a vehicle frame under stochastic loading.
Journal Article

Computational Efficiency Improvements in Topography Optimization Using Reanalysis

2016-04-05
2016-01-1395
To improve fuel economy, there is a trend in automotive industry to use light weight, high strength materials. Automotive body structures are composed of several panels which must be downsized to reduce weight. Because this affects NVH (Noise, Vibration and Harshness) performance, engineers are challenged to recover the lost panel stiffness from down-gaging in order to improve the structure borne noise transmitted through the lightweight panels in the frequency range of 100-300 Hz where most of the booming and low medium frequency noise occurs. The loss in performance can be recovered by optimized panel geometry using beading or damping treatment. Topography optimization is a special class of shape optimization for changing sheet metal shapes by introducing beads. A large number of design variables can be handled and the process is easy to setup in commercial codes. However, optimization methods are computationally intensive because of repeated full-order analyses.
Technical Paper

The Research Progress of Dynamic Photo-Elastic Method

2014-04-01
2014-01-0829
With the rapid development of computing technology, high-speed photography system and image processing recently, in order to meet growing dynamic mechanical engineering problems demand, a brief description of advances in recent research which solved some key problems of dynamic photo-elastic method will be given, including:(1) New digital dynamic photo-elastic instrument was developed. Multi-spark discharge light source was replaced by laser light source which was a high intensity light source continuous and real-time. Multiple cameras shooting system was replaced by high-speed photography system. The whole system device was controlled by software. The image optimization collection was realized and a strong guarantee was provided for digital image processing. (2)The static and dynamic photo-elastic materials were explored. The new formula and process of the dynamic photo-elastic model materials will be introduced. The silicon rubber mold was used without the release agent.
Journal Article

Microstructural Contact Mechanics Finite Element Modeling Used to Study the Effect of Coating Induced Residual Stresses on Bearing Failure Mechanisms

2014-04-01
2014-01-1018
Coatings have the potential to improve bearing tribological performance. However, every coating application process and material combination may create different residual stresses and coating microstructures, and their effect on bearing fatigue and wear performance is unclear. The aim of this work is to investigate coating induced residual stress effects on bearing failure indicators using a microstructural contact mechanics (MSCM) finite element (FE) model. The MSCM FE model consists of a two-dimensional FE model of a coated bearing surface under sliding contact where individual grains are represented by FE domains. Interactions between FE domains are represented using contact element pairs. Unique to this layered rolling contact FE model is the use of polycrystalline material models to represent realistic bearing and coating microstructural behavior. The MSCM FE model was compared to a second non-microstructural contact mechanics (non-MSCM) model.
Technical Paper

Austempering Process for Carburized Low Alloy Steels

2013-04-08
2013-01-0949
There is a continual need to apply heat treatment processes in innovative ways to optimize material performance. One such application studied in this research is carburizing followed by austempering of low carbon alloy steels, AISI 8620, AISI 8822 and AISI 4320, to produce components with high strength and toughness. This heat treatment process was applied in two steps; first, carburization of the surface of the parts, second, the samples were quenched from austenitic temperature at a rate fast enough to avoid the formation of ferrite or pearlite and then held at a temperature just above the martensite starting temperature to partially or fully form bainite. Any austenite which was not transformed during austempering, upon further cooling formed martensite or was present as retained austenite.
Technical Paper

Buckling of Structures Subject to Multiple Forces

2013-04-08
2013-01-1370
Frames are important structures found in many transportation applications such as automotive bodies and train cars. They are also widely employed in buildings, bridges, and other load bearing designs. When a frame is carrying multiple loads, it can potentially risk a catastrophic buckling failure. The loads on the frame may be non-proportional in that one force stays constant while the other is increased until buckling occurs. In this study the buckling problem is formulated as a constrained eigenvalue problem (CEVP). As opposed to other CEVP in which the eigenvectors are forced to comply with a number of the constraints, the eigenvalues in the current CEVP are subject to some equality constraints. A numerical algorithm for solving the constrained eigenvalue problem is presented. The algorithm is a simple trapping scheme in which the computation starts with an initial guess and a window containing the potential target for the eigenvalue is identified.
Technical Paper

An Experimental Analysis of Improved Mechanical Properties Achieved During the Tempering of Parking Gears

2009-04-20
2009-01-0419
Automotive parking gears were tempered using three different tempering processes with a motive of determining the best tempering processes in terms of the properties of the heat treated samples. The three tempering processes compared in this study are Induction temper, Furnace temper and Magnetic core-flux temper. Torsion tests, Residual Stress tests and metallurgical analysis were done on the samples that were induction heat-treated and then tempered using one of the above mentioned three tempering processes. The resultant test data was used to draw conclusions on the performance of the tempering processes.
Journal Article

Prediction of Automotive Side Swing Door Closing Effort

2009-04-20
2009-01-0084
The door closing effort is a quality issue concerning both automobile designers and customers. This paper describes an Excel based mathematical model for predicting the side door closing effort in terms of the required minimum energy or velocity, to close the door from a small open position when the check-link ceases to function. A simplified but comprehensive model is developed which includes the cabin pressure (air bind), seal compression, door weight, latch effort, and hinge friction effects. The flexibility of the door and car body is ignored. Because the model simplification introduces errors, we calibrate it using measured data. Calibration is also necessary because some input parameters are difficult to obtain directly. In this work, we provide the option to calibrate the hinge model, the latch model, the seal compression model, and the air bind model. The door weight effect is geometrically exact, and does not need calibration.
Technical Paper

Effect of Threaded Fastener Condition on Low Cycle Fatigue Failures in Metric Bolts Under Transverse Loading

2008-04-14
2008-01-0700
This paper presents an experimental investigation of the effect of threaded fastener condition on the low cycle fatigue behavior of a tightened metric fastener under a fully reversed, cyclic transverse load. The test set-up subjects tightened, threaded fasteners to the combined effect of axial, torsional, bending, and transverse shear loading. The two conditions of the fasteners were “as received” and “ultrasonically cleaned and oiled”. Fatigue performance at three different bolt tension levels was investigated. Based on preliminary testing arbitrarily selected amplitude of 0.05 inches was used for the cyclic transverse displacement, at a frequency of 10 Hz. A Scanning Electron Microscope (SEM) was used to assess the failure mode on a bolt fracture surface. The bolt stresses are sensitive to both thread and under head friction characteristics.
Journal Article

Fatigue Performance and Residual Stress of Carburized Gear Steels Part I: Residual Stress

2008-04-14
2008-01-1424
This particular study focuses on four specific gear steels: SAE 4320, SAE 8822, PS18, and 20MnCr5. Notched specimens are manufactured from the four materials. Three point bending experiments were conducted which include ultimate tests and fatigue tests. Part I is on ultimate test only. Part II will concentrate on fatigue testing. In order to see how the carburization affected the fatigue performance of these steels, a residual stress test was performed on one sample of each steel by mean of the incremental hole drilling method. The compressive stresses were found in all four steels with minimum and maximum stress approximately equal. This suggests that the residual stresses are biaxial in the carburized steel case. The difference between the maximum and minimum stresses is within 37% for all steels. The residual stress after the carburization process were found to be highest in the 4320 steel and SAE 8822, followed by PS 18 and then MnCr.
Journal Article

Fatigue Performance and Residual Stress of Carburized Gear Steels Part II: Fatigue Performance

2008-04-14
2008-01-1423
Part II of the paper focuses on fatigue tests of four specific gear steels: SAE 4320, SAE 8822, PS18, and 20MnCr5. Fatigue life, S-N curves are experimentally generated for all steels at low cycle fatigue and high cycle fatigue. The failure stresses at cycle one and slope of the linear portion of S-N curves are determined based on the experimental data. Endurance limits were tested. Uncertainty in the fatigue data is analyzed in details and values of sigma are calculated. Design curves were estimated based on the fatigue test results.
Journal Article

Offset Algorithm for Compound Angle Machining of Parts when Tool Motion is Unrestricted in Space

2008-04-14
2008-01-0246
Although the performance of CNC machines is accurate, unavoidable human errors at the part loading position have serious repercussions on engine performance. In the present paper the authors would like to develop an algorithm for error compensation when the tool movement is unrestricted in space. The new solution algorithm will be in terms of the known initial system variables such as the part loading errors, drill tool inclinations, location of spindle etc. This modified paper employs the same principles of inverse kinematics as done in the earlier paper wherein a faulty compound-hole angle axis in space caused by the translational and rotational errors at the part loading position is identified with an imaginary true axis in space by enforcing identity through a modified machine axes taking into effect inclination of the drill tool in space. In the absence of any specific application, this algorithm is verified on Solid Works a commercial CAD tool and found to be correct.
Technical Paper

Engine Simulation of a Restricted FSAE Engine, Focusing on Restrictor Modelling

2006-12-05
2006-01-3651
One-dimensional (1D) engine simulation packages are limited in modeling flows through an adverse pressure gradient where boundary layer separation is more likely to occur, as in the case of the diffuser part of the restrictor. The restrictor modeling difficulty usually manifests itself as an engine model that consumes a lot of effort (both computational and from the user) in the modeling of the restrictor. The approach sought in this work was to provide a flow vs pressure drop dependency to the code such that it does not consume too much effort in the analysis of the restrictor. This approach is similar to that used for the valve flow, where a look up table is typically provided for determining the flow. Experimentally determined flow measurements on a thin-plate orifice, a short restrictor and a long restrictor are presented and discussed. The developed model gave excellent results in an acyclic steady-state simulation and is being integrated in the full engine model.
Technical Paper

Keyless Message Authentication by Verifying Position and Velocity for Inter-Vehicle Communication

2006-04-03
2006-01-1582
Inter-vehicle communication is being considered as a means for increasing safety and efficiency in future intelligent highways. However, the security in these future mobile ad hoc networks of vehicles should not be an after thought. The main challenges in developing such security schemes are the highly dynamic environment and the cost restrictions. In this paper, we propose a keyless scheme for message authentication in inter-vehicle communication by verifying the sender’s position and velocity. The approach relies on signal propagation time to authenticate messages being communicated. No infrastructure or dedicated hardware beyond standard GPS is required.
Technical Paper

Offset Algorithm for Compound Angle Machining of Cummins Cylinder Heads

2005-04-11
2005-01-0506
Proper valve angles and concentric valve seats are critical to performance of an engine. If the valve seat were not right, the valve is not going to seat properly resulting in reduced power output. Although the performance of CNC machines is accurate, unavoidable human errors at the part loading position have serious repercussions on engine performance. A solution algorithm presented in this paper employs the principles of inverse kinematics wherein a faulty compound-hole angle axis in space caused by the translational and rotational errors at the part loading position is identified with an imaginary true axis in space by enforcing identity through a modified machine axes.
Technical Paper

Measurement of Thermal Residual Strain Induced During the Hardening of a Sheet Metal and Reinforced Composite by Digital Shearography

2005-04-11
2005-01-0895
Shearography is an interferometric, non-contact and full field method for direct measurement of first derivatives of deformation (strain). It is relatively insensitive to environmental disturbances and has been proven to be a practical measuring tool for nondestructive testing and evaluation (NDT/NDE). In this paper it has been employed to study the thermal residual strains produced during the reinforcement of a composite to a sheet metal. The reinforced composite is used as an additive to provide extra strength to the sheet metal. The reinforcement process involves gradual heating of the glued composite to a temperature of around 175°C - 180°C and then allowing it cool down to room temperature. During the heating process both the composite and the sheet metal are strained, but during the cooling process some amount of strain is left behind in the sheet metal and it has a key role to play when the product is used for critical parts in automobile and aircraft industries.
X