Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Computational Study on Laminar Flame Propagation in Mixtures with Non-Zero Reaction Progress

Flame speed data reported in most literature are acquired in conventional apparatus such as the spherical combustion bomb and counterflow burner, and are limited to atmospheric pressure and ambient or slightly elevated unburnt temperatures. As such, these data bear little relevance to internal combustion engines and gas turbines, which operate under typical pressures of 10-50 bar and unburnt temperature up to 900K or higher. These elevated temperatures and pressures not only modify dominant flame chemistry, but more importantly, they inevitably facilitate pre-ignition reactions and hence can change the upstream thermodynamic and chemical conditions of a regular hot flame leading to modified flame properties. This study focuses on how auto-ignition chemistry affects flame propagation, especially in the negative-temperature coefficient (NTC) regime, where dimethyl ether (DME), n-heptane and iso-octane are chosen for study as typical fuels exhibiting low temperature chemistry (LTC).
Technical Paper

A Model for Crank-Angle-Resolved Engine Cylinder Pressure Estimation

Real-time measurement or estimation of crank-angle-resolved engine cylinder pressure may become commonplace in the next generation of engine controllers to optimize spark, valve timing, or compression ratio. Toward the development of a real-time cylinder pressure estimator, this work presents a crank-angle-resolved engine cylinder pressure estimation model that could accept inputs such as speed, manifold pressure and throttle position, and deliver crank-angle resolved cylinder pressure in real-time, at engine speeds covering the useful operating range of most engines. The model was validated by comparing simulated cylinder pressure with thirteen sets of cylinder pressure data, from two different commercial engines from two different OEMs. Estimated pressures were compared against the actual measured pressure traces. The average relative error is about 3% while the maximum relative error is 5%. Both can be improved with further tuning.
Technical Paper

Investigation of Fuel Cell Performance and Water Accumulation in a Transparent PEM Fuel Cell

Polymer Electrolyte Membrane (PEM) fuel cells have grown in research and development for many applications due to their high efficiency and humble operating condition requirements. Water management in the cathode region of the PEM fuel cell is an essential and sensitive phenomenon for cold environments and fuel cell’s performance. This paper investigates the behavior of water production by constructing a transparent-cathode PEM fuel cell. The effects of pressure, relative humidity, and cathode stoichiometric ratio on the production of water as a function of time were studied. Each test set is compared to a reference state. The images of water liquid accumulation inside the cathode bipolar plate channels are shown with the corresponding polarization curves.
Journal Article

Design under Uncertainty using a Combination of Evidence Theory and a Bayesian Approach

Early in the engineering design cycle, it is difficult to quantify product reliability due to insufficient data or information to model uncertainties. Probability theory can not be therefore, used. Design decisions are usually based on fuzzy information which is imprecise and incomplete. Various design methods such as Possibility-Based Design Optimization (PBDO) and Evidence-Based Design Optimization (EBDO) have been developed to systematically treat design with non-probabilistic uncertainties. In practical engineering applications, information regarding the uncertain variables and parameters may exist in the form of sample points, and uncertainties with sufficient and insufficient information may exist simultaneously. Most of the existing optimal design methods under uncertainty can not handle this form of incomplete information. They have to either discard some valuable information or postulate the existence of additional information.
Technical Paper

Relative Contributions of Intake and Exhaust Tuning on SI Engine Breathing - A Computational Study

This study examines the contributions and interactions of intake and exhaust tuning on a 4-stroke single-cylinder engine for various engine speeds and valve timings. The parametric study was performed using a 1-D engine simulation model, the combustion sub-model of which was calibrated based on experimental pressure data. Mechanisms by which tuning changes the volumetric efficiency of an engine were studied. Simulation results are compared with established empirical correlations which predict pipe lengths for maximum volumetric efficiency. It was found that intake tuning has a more dominant role in the breathing capability of the engine compared to exhaust tuning and that both are independent from each other. Valve timing was found to have no effect on intake tuning characteristics but to affect exhaust tuning.
Technical Paper

Piston Secondary Dynamics Considering Elastohydrodynamic Lubrication

An analytical method is presented in this paper for simulating piston secondary dynamics and piston-bore contact for an asymmetric half piston model including elastohydrodynamic (EHD) lubrication at the bore-skirt interface. A piston EHD analysis is used based on a finite-difference formulation. The oil film is discretized using a two-dimensional mesh. For improved computational efficiency without loss of accuracy, the Reynolds’ equation is solved using a perturbation approach which utilizes an “influence zone” concept, and a successive over-relaxation solver. The analysis includes several important physical attributes such as bore distortion effects due to mechanical and thermal deformation, inertia loading and piston barrelity and ovality. A Newmark-Beta time integration scheme combined with a Newton-Raphson linearization, calculates the piston secondary motion.
Technical Paper

Engine Simulation of a Restricted FSAE Engine, Focusing on Restrictor Modelling

One-dimensional (1D) engine simulation packages are limited in modeling flows through an adverse pressure gradient where boundary layer separation is more likely to occur, as in the case of the diffuser part of the restrictor. The restrictor modeling difficulty usually manifests itself as an engine model that consumes a lot of effort (both computational and from the user) in the modeling of the restrictor. The approach sought in this work was to provide a flow vs pressure drop dependency to the code such that it does not consume too much effort in the analysis of the restrictor. This approach is similar to that used for the valve flow, where a look up table is typically provided for determining the flow. Experimentally determined flow measurements on a thin-plate orifice, a short restrictor and a long restrictor are presented and discussed. The developed model gave excellent results in an acyclic steady-state simulation and is being integrated in the full engine model.
Technical Paper

Oil Film Dynamic Characteristics for Journal Bearing Elastohydrodynamic Analysis Based on a Finite Difference Formulation

A fast and accurate journal bearing elastohydrodynamic analysis is presented based on a finite difference formulation. The governing equations for the oil film pressure, stiffness and damping are solved using a finite difference approach. The oil film domain is discretized using a rectangular two-dimensional finite difference mesh. In this new formulation, it is not necessary to generate a global fluidity matrix similar to a finite element based solution. The finite difference equations are solved using a successive over relaxation (SOR) algorithm. The concept of “Influence Zone,” for computing the dynamic characteristics is introduced. The SOR algorithm and the “Influence Zone” concept significantly improve the computational efficiency without loss of accuracy. The new algorithms are validated with numerical results from the literature and their numerical efficiency is demonstrated.
Technical Paper

Measurement of Fluid Bulk Modulus Using Impedance of Hydraulic Circuits

Certain properties of fluid change with pressure, temperature and other operating system conditions. In automotive hydraulic systems driven by pumps, air usually enters the system as dissolved matter or very small bubbles. Such air will change certain properties of the fluid like the density, bulk modulus and viscosity. Measuring these properties for evaluating system performance in real operating conditions is one of the big challenges that face engineers. In this paper, the bulk modulus of certain power steering fluids is measured using standard impedance and flow ripple tests for pumps. The effects of pressure, temperature and speed on the bulk modulus are studied thoroughly.
Technical Paper

A FEM Model to Predict Pressure Loading Cycle for Hydroforming Processes

Tubular hydroforming is a novel process that has recently gained much attention due to its cost-effective application in the automotive industry. Hydroformed automotive parts have high strength to weight ratio and have good repeatability with high dimensional accuracy. At this time, there is little experience in modeling the hydroforming process to better understand its application and researchers have tried using stamping simulation software to analyze the process. Unlike conventional sheet stamping which is a displacement driven process, tubular hydroforming is a force driven process and its success is governed by the nature of internal pressurization. Hence, a new three-dimensional finite element model using a computationally efficient 6-noded shell element has been developed. A simple pressure prediction model has been developed and integrated into the formulation for effective control of the process.