Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Comparative Assessment of Frequency Dependent Joint Properties Using Direct and Inverse Identification Methods

2015-06-15
2015-01-2229
Elastomeric joints are utilized in many automotive applications, and exhibit frequency and excitation amplitude dependent properties. Current methods commonly identify only the cross-point joint property using displacement excitation at stepped single frequencies. This process is often time consuming and is limited to measuring a single dynamic stiffness term of the joint stiffness matrix. This study focuses on developing tractable laboratory inverse experiments to identify frequency dependent stiffness matrices up to 1000 Hz. Direct measurements are performed on a commercial elastomer test system and an inverse experiment consisting of an elastic beam (with a square cross section) attached to a cylindrical elastomeric joint. Sources of error in the inverse methodology are thoroughly examined and explained through simulation which include ill-conditioning of matrices and the sensitivity to modeling error.
Technical Paper

Integrated Approach to the Selection of Cost-Effective and Lean Process and Equipment in Forming

1999-03-01
1999-01-0423
A significant number of formed parts constitute the components of an automobile or aircraft. The formed blanks for the components are produced at different temperatures ranging from room temperature to 2250 degrees Fahrenheit for steel. Forming progressions convert a basic shape or geometry (a cylindrical billet, for example) of metal into a more complex shape close to the required final component geometry. The progression steps, choice of temperatures and equipment significantly impact the cost of the blank. A ‘Discriminating Cost Model’ was developed to capture the cost effectiveness of a given choice of process or equipment, and an AI (Artificial Intelligence) search algorithm implemented to quickly search through the large number of process and equipment selection options to arrive at the most cost effective choice. Two applications of this methodology to existing plant processes to significantly reduce cost and implement ‘lean’ principles of manufacturing are discussed.
X