Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

AAH, The Latest Development in Microgravity Animal Research

2005-07-11
2005-01-2784
The Advanced Animal Habitat (AAH) represents the next generation of Space Station based animal research facilities. Building upon previously developed flight hardware and experience, the AAH offers greatly enhanced system capabilities and performance. The design focuses upon the creation of a robust and flexible platform capable of supporting present and future experimental needs. A modular packaging and distributed control architecture leads to increased system adaptability and expandability. The baseline configuration includes group housing capability for up to six rats with automated food and water delivery as well as waste collection. Animals are continuously monitored with three cameras during both day and night cycles. The animals can be accessed while on-orbit through the Life Sciences Glovebox to perform a wide variety of experimental protocols.
Technical Paper

Science Evaluation Units for the Plant Research Unit and the Advanced Animal Habitat

2005-07-11
2005-01-2783
The Advanced Animal Habitat (AAH) and Plant Research Unit (PRU) are two major components of the Space Station Biological Research Project (SSBRP). These two habitats are currently under development by Orbital Technologies Corporation (ORBITEC). Science Evaluation Units (SEUs) have been developed for each of these habitats to allow investigators to plan and test flight experiments on the ground using hardware that is functionally similar to the flight versions of the AAH and PRU. The SEUs also contain key functionality that makes them excellent science tools for general laboratory experiments that are not related to flight experiments.
Technical Paper

Protecting the ISS Crew from Biological Hazards: The Advanced Animal Habitat (AAH) Containment Approach

2005-07-11
2005-01-2956
The Advanced Animal Habitat (AAH) represents the next generation of Space Station based animal research facilities. Care has been taken to protect the ISS crew from exposure to the hazardous biological materials contained within the AAH. These materials include rat feces, urine, dander, and odor. The approach to containing biological materials relies on collecting the solid and liquid waste, providing physical barriers between the waste and the crew environment, maintaining negative pressure within the specimen environment with respect to the crew environment, and providing odor filtration of air exchanged between the specimen and crew environments. These protections will be in place during all modes of AAH operation.
Technical Paper

Integrating Reliability Principles in the Design of the Plant Research Unit (PRU)

2004-07-19
2004-01-2393
The design of reliable systems is especially important when they are intended for use on the International Space Station (ISS). Limits on crew time and the sensitive nature of experiments being performed require that the systems used to support those experiments have a very low probability of failure. The Plant Research Unit (PRU) has very strict reliability requirements and thus provides a good example of how the challenge of designing reliable systems can be met.
Technical Paper

Plant Research Unit Control Architecture Overview

2004-07-19
2004-01-2392
High reliability and system flexibility are driving factors in the Plant Research Unit development. Proper selection of the unit electrical and software control architecture is fundamental to achieving these goals. Key features of the PRU control design include the use of a real time operating system for main process control, dynamic power management, a distributed control architecture and subsystem modularity. The chosen approach will allow future modifications and improvements to be incorporated at the subsystem level with minimal impact to the unit overall. Hardware fault tolerance and redundancy enhance system reliability.
Technical Paper

Human Factors and Maintainability in the Plant Research Unit (PRU)

2004-07-19
2004-01-2583
The International Space Station (ISS) presents unique challenges in the field of maintainability engineering. Due to limited training time on earth and crew time in space, systems must be designed for ease of operation and maintenance. The Plant Research Unit (PRU), an advanced plant growth facility, is required to operate on orbit with minimal crew interaction for maintenance. The PRU has been allotted one hour per increment for corrective maintenance, which consists of replacing Orbital Replacement Units (ORU) or incorporating workarounds. Designing highly maintainable systems is not possible without incorporating the principles of human factors engineering. The PRU has met the strict crew time requirements by combining those principles with maintainability engineering analysis techniques and then integrating them in the design process.
Technical Paper

Plant Research Unit Lighting System Development

2004-07-19
2004-01-2454
As part of the PRU project a new plant lighting system has been developed. System design focused on light source development, chamber optical performance improvements and electronics optimization. Central to the lighting system performance is a high density LED Light Engine, enabling increased spectral diversity, higher irradiance levels, enhanced uniformity and improved efficiency. Chamber wall surface materials were tested to minimize the vertical irradiance gradient and improve planar uniformity. Total lighting system efficiency was improved through the use of switching converter LED drive circuitry. As an alternative to the LED light source, an advanced planar fluorescent lighting source has also been developed.
Technical Paper

Analysis of Crew Interaction with Long-Duration Plant Growth Experiment

2003-07-07
2003-01-2482
The Biomass Production System (BPS) was flown on the ISS for 73 days as part of the Increment 4 mission. To obtain maximum benefit from the long mission duration, numerous manual crew procedures were incorporated into the BPS experiments. These procedures included gas sampling, root module priming, harvesting, pollination, filter cleaning, water refill, and water sampling. On-orbit crew assessments were filled out for each of these procedures to evaluate the ability of BPS to accommodate them. The assessment asked questions about each phase of an activity and solicited recommendations for improvements. Further analysis of most procedures was provided by detailed video made on-orbit and multiple post-flight crew debriefs. Most assessments indicated no need for improvements, but a number of crew suggestions will be incorporated into hardware and procedure updates.
Technical Paper

PRU, The Next Generation of Space Station Plant Research Systems

2003-07-07
2003-01-2527
Based upon the development experience and flight heritage of the Biomass Production System, the Plant Research Unit embodies the next generation in the evolution of on-orbit plant research systems. The design focuses on providing the finest scientific instrument possible, as well as providing a sound platform to support future capabilities and enhancements. Performance advancements, modularity and robustness characterize the design. This new system will provide a field ready, highly reliable research tool.
Technical Paper

The Use of Interactive 3D Simulation in Crew Training and Spaceflight Operations

2002-07-15
2002-01-2499
As space hardware continues to grow in complexity, the demands on crews expected to be able to operate and maintain this equipment continue to grow. In terms of the International Space Station, the demands on the crew have been further increased by the reduction in crew capacity from the originally planned seven members down to three. This situation has prompted the need to find new ways of training that can meet these demands. In particular, just-in-time training techniques promise to enable crew members to correctly execute procedures that they have never performed before on equipment that they are only marginally familiar with or perhaps have never even seen before. To enable crews to work with unfamiliar procedures or equipment, we believe that it is necessary to employ a highly visual approach to convey the complex spatial information that is often involved.
Technical Paper

Plant Research Unit - Program Overview and Update

2002-07-15
2002-01-2279
The Plant Research Unit (PRU) is the Space Station Biological Research Program plant growth facility being developed for the International Space Station. The plant habitat is designed for experiments in near-zero gravity or it can be rotated by the ISS Centrifuge for experiments at any gravity level from microgravity to twice Earth's gravity. Plant experimentation will be possible in multiple Plant Research Units at one time, isolating the effect of gravity on the biological specimens. The PRU will provide and control all aspects of a plant's needs in a nearly closed system. In other words, the shoot and root environments will not be open to the astronaut's environment except for experiment maintenance such as planting, harvesting and plant sampling. This also means that all lighting, temperature and humidity control, nutrient delivery, and air filtering and cleaning must be done in a very small volume, with very little mass and power usage and with minimal crew time.
X