Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Technical Paper

Design of Drive Cycle for Electric Powertrain Testing

2023-04-11
2023-01-0482
Drive cycles have been the official way to create standardized comparisons of fuel economy and emission levels between vehicles. Since the 1970s these have evolved to be more representative of real-world driving, with today’s standard being the World Harmonized Light Vehicle Testing Procedure. The performance of battery electric vehicles which consist of electric drives, battery, regenerative braking and their management systems may differ when compared to that of vehicles powered by conventional internal combustion engines. However, drive cycles used for evaluating the performance of vehicles, were originally developed for conventional powered vehicles. Moreover, the kinematic parameters that can distinguish the real-world performance of the differently powered vehicles are not fully known. This work aims to investigate the difference between vehicles powered by pure internal combustion engine, electric hybrid and pure electric drive.
Technical Paper

Numerical Simulation of Ethanol-Based Fuels in an F1 Power Unit

2023-04-11
2023-01-0739
Formula (1) vehicles have transitioned from E5 to E10 fuel for the 2022 season to reduce carbon emissions and by 2026 the vehicles are required to use 100% sustainable fuels. The aim of this paper is to identify the operating envelope of the F1 power unit for E10-E100 fuel and the resulting emission levels for these fuel compositions using numerical simulations. To achieve this aim an F1 engine model has been developed in GT-Suite with reference to the FIA 2022 Technical Regulations. The combustion model has been validated using data obtained from literature relating to laminar and turbulent flame speed, friction and heat transfer characteristics within the combustion chamber. One of the main challenges of using ethanol-based fuels is the increased levels of formaldehyde in the tailpipe.
Technical Paper

Assessment of the Impact of Vehicle Emissions on Air Quality Changes during COVID-19 Lockdown in Bogota, Colombia

2022-03-29
2022-01-0583
The COVID-19 pandemic has forced governments to implement rigorous containment measures on reduction or cessation of human mobility, transportation and economic activities, to control the spread of the virus. This is considered as a unique opportunity to study the impact of local lockdowns periods, especially, on the vehicle emission levels, and urban air quality in cities with high pollution levels, such as Bogota, Colombia. The first case was confirmed in Colombia on March 6, 2020, since then to prevent its propagation, the government declared a national lockdown starting from March 20 until August 31, 2020. Therefore, this study attempted to analyse the air quality in Bogota by assessing the concentrations of the atmospheric pollutants NO₂, SO₂, O₃, CO, PM₂.₅ and PM₁₀ during the lockdown period and the corresponding concentrations levels during the same period in 2018 and 2019. The data for this pilot study was obtained from the air quality monitoring stations of Bogota.
Technical Paper

A Case for Technology - Forcing Transformative Changes in the F1 Power Unit

2021-04-06
2021-01-0371
Formula 1 has always played a major role in technological advancements within the automotive and motorsport sectors. The adaptive changes introduced for the Power Unit (PU) in 2014 forced constructors, in collaboration with industry partners, to invent technologies for exceeding 50% brake thermal efficiency within a short span of time, demonstrating that technology-forcing regulations through motorsport is the favorable route to achieve transformative changes within the automotive sector. Therefore, in an attempt to address arising global warming and health concerns, the present work analytically examines the ambient air quality in track stadia during F1 race events to identify potential PU exhaust emission targets. It models the volume of air contained within the circuits located near heavily built-up areas assuming stagnant air conditions and uniform mixing.
Technical Paper

Hydrogen Fuel Cell Vehicle for Mexico City

2020-04-14
2020-01-1169
The search for alternative fuel for transport vehicles and also replacement of internal combustion engines in order to reduce the harmful emissions have been forcing the vehicle manufacturers to innovate new technology solutions for meeting the stringent legislative targets. Mexico’s commitment for de-carbonisation of transport sector and meeting the environmental goals is shaping it especially, and with this, it favours the move towards electrification of the vehicles. The aim of the present work is to numerically evaluate the possibility of replacing the IC engine in the existing hybrid vehicles with the Hydrogen fuel cell system. This work modelled a Hydrogen fuel cell vehicle based on Toyota MIRAI and validated the fuel economy performance of the vehicle using experimental data. This validated model was used to estimate the fuel economy for real-world drive cycles generated in 2019 from Mexico City.
Technical Paper

Route Selection Strategy for Hybrid Vehicles Based on Energy Management and Real Time Drive Cycles

2018-04-03
2018-01-0995
Air pollution levels in an urban environment is a major concern for developed and developing countries alike. Governments around the world are constantly trying to control and reduce air pollution levels through regulations. Low emission zones are being designated in cities worldwide in order to reduce the level of pollutants in big cities. The automotive industry is affected by those regulations and they are becoming more demanding over the years. Present work is aimed at developing a control strategy for a hybrid vehicle in order to optimize the fuel economy and emission levels based on GPS information, driver specific driving characteristics and weather forecast data for a given route. It uses powertrain model of a hybrid vehicle for developing route and driver specific control strategy. The full vehicle model has two sub-models: a route selector and a powertrain optimization model.
Technical Paper

Technology Choices for Optimizing the Performance of Racing Vehicles

2016-04-05
2016-01-1173
In the continuous search for technology to improve the fuel economy and reduce greenhouse gas emission levels from the automotive vehicle, the automotive industry has been evaluating various technological options. Since the introduction of stringent legislative targets in Europe as well as in the United States of America in late 20th Century, one of the viable options identified by the industry was the application of alternative powertrain. On the motorsport arena, changes introduced by the Formula 1 governing body (FIA) for the high-performance racing engines also focuses on fuel economy. FIA regulation for 2014 restricts the fuel-flow rate to a maximum of 100kg/hr beyond 10,500 rev/min and prescribe fuel flow rate below 10,500 rev/min operating conditions for the F1 Engines. In addition, Formula1 and Le Mans racing regulations actively promote the integration of the hybrid powertrain in order to achieve optimum fuel economy.
Technical Paper

Performance of Ancillary Systems of 2014+ Le Mans LMP1-H Vehicles and Optimization

2015-04-14
2015-01-1163
This study details the investigation into the hybridization of engine ancillary systems for 2014+ Le Mans LMP1-H vehicles. This was conducted in order to counteract the new strict fuel-limiting requirements governing the powertrain system employed in this type of vehicle. Dymola 1D vehicle simulation software was used to construct a rectilinear vehicle model with a map based 3.8L V8 engine and its associated ancillary systems, including oil pumps, water pump and fuel pump as well as a full kinetic energy recovery system (ERS). Appropriate validation strategy was implemented to validate the model. A validated model was used to study the difference in fuel consumption for the conventional ancillary drive off of the internal combustion engine in various situational tests and a hybrid-electric drive for driving engine ancillaries.
Technical Paper

Nanofluids and Thermal Management Strategy for Automotive Application

2015-04-14
2015-01-1753
Stringent emission norms introduced by the legislators over the decades has forced automotive manufacturers to improve the fuel economy and emission levels of their engines continuously. Therefore, the emission levels of modern engines are significantly lower than pre-1990 engines. However, the improvement in fuel economy is marginal when compared to that of emission levels. For example, approximately 30% of total energy in the fuel is being wasted through the cooling systems in the modern engines. Therefore, thermal management systems are being developed to reduce these losses and offer new opportunities for improving the fuel economy of the vehicles. One of the new emerging technologies for thermal management is the use of nanofluids as coolant. Nanofluids are a mixture of nano-sized particles added to a base fluid to improve its thermal characteristics.
Technical Paper

Numerical Simulation of Warm-Up Characteristics and Thermal Management of a GDI Engine

2013-04-08
2013-01-0870
Improving the thermal efficiency of internal combustion engines over the engine operating range is essential for achieving optimum fuel economy. The thermal efficiency of the engine during cold start is one of the areas where significant improvement can be made if a suitable thermal management strategy is identified and implemented. Thermal management strategy in an engine can allow the engine to work at different operating temperatures in order to reduce the heat transfer loss by ensuring optimum volumetric efficiency, efficient combustion and adequate safety margin for the durability of mechanical components. The aim of the present work was to numerically model the warm-up characteristics of a 4 cylinder, 1.6 litre, turbocharged and intercooled, Euro IV, gasoline direct injected engine. It used a fully validated engine model which works based on the predictive combustion model.
X