Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Low Cost Robotized Gearshift System for Formula SAE Vehicles

2016-04-05
2016-01-0003
This paper reports the studies, design and developments of an electronic electro-actuated gearshifter installed on the DP7, which is Politecnico di Milano car that took part at Formula SAE 2015 competitions in Hockenheim and Varano dè Melegari. The original idea was born to replace the hydraulic gearshift system used until 2011 because of its high weight and cost. After many evaluations about the kind of technology to use, made by previous team members in the electronic department, the final project was a fully electric shifter. This system has proven its qualities among which are lightness and low cost.
Journal Article

NLMPC for Real Time Path Following and Collision Avoidance

2015-04-14
2015-01-0313
This paper presents a nonlinear control approach to achieve good performances in vehicle path following and collision avoidance when the vehicle is driving under cruise highway conditions. Nonlinear model predictive control (NLMPC) is adopted to achieve online trajectory control based on a simplified vehicle model. GMRES/Continuation algorithm is used to solve the online optimization problem. Simulations show that the proposed controller is capable of tracking the desired path as well as avoiding the obstacles.
Technical Paper

A Low Cost System for Active Gear Shift and Clutch Control

2015-04-14
2015-01-0228
The objective of this study is to demonstrate the design and construction of an innovative active gear-shift and clutch for racecars, applied to a Formula Student car, based on the use of DC gear-motors. Racecars require extremely quick gear-shifts and every system to be as light as possible. The proposed solution is designed to reduce energy consumption, weight and improve gear-shift precision compared to traditionally employed electro-hydraulic solutions, although maintaining state of the art performances.
Technical Paper

Numerical Investigation of the Vertical Dynamics of an Agricultural Vehicle Operating on Deformable Soil

2012-04-16
2012-01-0764
This work focuses on the analysis of the vertical dynamics of an agricultural tractor, investigating the influence of suspensions' parameters on riding comfort and contact forces. The use of lugged tires coupled with the operation over banked, irregular and deformable tracks, determines significant levels of vertical acceleration over several components of the tractor. These operating conditions have a direct effect on the driver, whose alertness and efficiency are undermined by the exposure to high levels of acceleration for a long time. Secondly, variations of the normal and traction forces provided by the tires affect the quality of tillage and other operations. The paper presents a multi-body vehicle model of a tractor interfaced with a tire-soil contact model allowing to take into account soil's deformation and tread pattern design.
X