Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

Steering Behavior of an Articulated Amphibious All-Terrain Tracked Vehicle

2020-04-14
2020-01-0996
This paper presents a study related to an Articulated Amphibious All-Terrain Tracked Vehicle (ATV) characterized by a modular architecture. The ATV is composed by two modules: the first one hosts mainly the vehicle engine and powertrain components, meanwhile the second one can be used for goods transportation, personnel carrier, crane and so on. The engine torque is transmitted to the front axle sprocket wheel of each module and finally distributed on the ground through a track mechanism. The two modules are connected through a multiaxial joint designed to guarantee four relative degrees of freedom. To steer the ATV, an Electro Hydraulic Power System (EHPS) is adopted, thus letting the vehicle steerable on any kind of terrain without a differential tracks speed. The paper aims to analyze the steady-state lateral behavior of the ATV on a flat road, through a non-linear mathematical vehicle model built in Matlab/Simulink environment.
Technical Paper

The Effect of Post Injection Coupled with Extremely High Injection Pressure on Combustion Process and Emission Formation in an Off-Road Diesel Engine: A Numerical and Experimental Investigation

2019-09-09
2019-24-0092
In this paper, a numerical and experimental assessment of post injection potential for soot emissions mitigation in an off-road diesel engine is presented, with the aim of supporting hardware selection and engine calibration processes. As a case study, a prototype off-road 3.4 liters 4-cylinder diesel engine developed by Kohler Engines was selected. In order to explore the possibility to comply with Stage V emission standards without a dedicated aftertreatment for NOx, the engine was equipped with a low pressure cooled Exhaust Gas Recirculation (EGR), allowing high EGR rates (above 30%) even at high load. To enable the exploitation of such high EGR rates with acceptable soot penalties, a two-stage turbocharger and an extremely high-pressure fuel injection system (up to 3000 bar) were adopted. Moreover, post injections events were also exploited to further mitigate soot emissions with acceptable Brake Specific Fuel Consumption (BSFC) penalties.
Journal Article

Model-Based Control of BMEP and NOx Emissions in a Euro VI 3.0L Diesel Engine

2017-09-04
2017-24-0057
A model-based approach to control BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed on a FPT F1C 3.0L Euro VI diesel engine for heavy-duty applications. The controller is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), in-cylinder pressure, BMEP and NOx engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. A new discretization scheme has been developed for the model equations, in order to reduce the accuracy loss when the computational step is increased. This has allowed the required computational time to be reduced to a great extent.
Technical Paper

Numerical Simulation of the Combustion Process of a High EGR, High Injection Pressure, Heavy Duty Diesel Engine

2017-09-04
2017-24-0009
To comply with Stage IV emission standard for off-road engines, Kohler Engines has developed the 100kW rated KDI 3.4 liters diesel engine, equipped with DOC and SCR. Based on this engine, a research project in collaboration between Kohler Engines, Ricardo, Denso and Politecnico di Torino was carried out to exploit the potential of new technologies to meet the Stage IV and beyond emission standards. The prototype engine was equipped with a low pressure cooled EGR system, two stage turbocharger, high pressure fuel injection system capable of very high injection pressure and DOC+DPF aftertreatment system. Since the Stage IV emission standard sets a 0.4 g/kWh NOx limit for the steady state test cycle (NRSC), that includes full load operating conditions, the engine must be operated with very high EGR rates (above 30%) at very high load.
Journal Article

Steady-State and Transient Operations of a Euro VI 3.0L HD Diesel Engine with Innovative Model-Based and Pressure-Based Combustion Control Techniques

2017-03-28
2017-01-0695
In the present work, different combustion control strategies have been experimentally tested in a heavy-duty 3.0 L Euro VI diesel engine. In particular, closed-loop pressure-based and open-loop model-based techniques, able to perform a real-time control of the center of combustion (MFB50), have been compared with the standard map-based engine calibration in order to highlight their potentialities. In the pressure-based technique, the instantaneous measurement of in-cylinder pressure signal is performed by a pressure transducer, from which the MFB50 can be directly calculated and the start of the injection of the main pulse (SOImain) is set in a closed-loop control to reach the MFB50 target, while the model-based approach exploits a heat release rate predictive model to estimate the MFB50 value and sets the corresponding SOImain in an open-loop control. The experimental campaign involved both steady-state and transient tests.
Journal Article

Comparison between Internal and External EGR Performance on a Heavy Duty Diesel Engine by Means of a Refined 1D Fluid-Dynamic Engine Model

2015-09-06
2015-24-2389
The potential of internal EGR (iEGR) and external EGR (eEGR) in reducing the engine-out NOx emissions in a heavy-duty diesel engine has been investigated by means of a refined 1D fluid-dynamic engine model developed in the GT-Power environment. The engine is equipped with Variable Valve Actuation (VVA) and Variable Geometry Turbocharger (VGT) systems. The activity was carried out in the frame of the CORE Collaborative Project of the European Community, VII FP. The engine model integrates an innovative 0D predictive combustion algorithm for the simulation of the HRR (heat release rate) based on the accumulated fuel mass approach and a multi-zone thermodynamic model for the simulation of the in-cylinder temperatures. NOx emissions are calculated by means of the Zeldovich thermal and prompt mechanisms.
Journal Article

Use of an Innovative Predictive Heat Release Model Combined to a 1D Fluid-Dynamic Model for the Simulation of a Heavy Duty Diesel Engine

2013-09-08
2013-24-0012
An innovative 0D predictive combustion model for the simulation of the HRR (heat release rate) in DI diesel engines was assessed and implemented in a 1D fluid-dynamic commercial code for the simulation of a Fiat heavy duty diesel engine equipped with a Variable Geometry Turbocharger system, in the frame of the CORE (CO2 reduction for long distance transport) Collaborative Project of the European Community, VII FP. The 0D combustion approach starts from the calculation of the injection rate profile on the basis of the injected fuel quantities and on the injection parameters, such as the start of injection and the energizing time, taking the injector opening and closure delays into account. The injection rate profile in turn allows the released chemical energy to be estimated. The approach assumes that HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber.
Journal Article

Modelling and Simulation of Brake Booster Vacuum Pumps

2013-05-15
2013-01-9016
Aim of this work is the development of a lumped parameters simulation model of single-vane vacuum pumps for pneumatically actuated brake boosters. Kinematic and fluid-dynamic models are integrated in a simulation environment to create a tool aimed at evaluating the vacuum pump performance and at guiding the designer during the prototype development. The paper describes extensively the mathematical model, the time domain simulation and experimental analyses performed on a camshaft mounted unit. Great emphasis is placed on the evaluation of the geometric quantities of the control volumes into which the vacuum pump has been divided. For each control volume the mass and energy conservation equations lead to the determination of the instantaneous pressure. The volume of each variable chamber and the respective angular derivative are calculated as function of the shaft position starting from the stator track profile supplied as a generic closed polyline.
Technical Paper

Reduction in Pollutant Emissions in an “Off-Road” DI Diesel Engine by Means of Exhaust Gas Recirculation

2011-11-08
2011-32-0610
The aim of this work was to obtain a reduction in pollutant emissions, in particular for NOx and Soot, in an “Off-Road” DI Diesel Engine, equipped with a common rail injection system, by means of exhaust gas recirculation (EGR). First, an engine simulation was performed using a one-dimensional code, and the model was then calibrated with experimental results obtained from a previous research work conducted on bench tests. Thanks to the engine model, specific emissions were then determined in all conditions, that is, in “eight modes” pertaining to engine loads and speeds. Both the injection advance and EGR amount were changed for all of these conditions in order to obtain the best compromise between fuel consumption and emissions and to respect standard regulations. The investigation was performed using both the Wiebe and a more complex combustion models; this latter allows in fact to determine the soot emission through the Nagle-Strickland model.
Journal Article

Mild Catalytic DPF Regeneration and Related CO Emissions in Commercial Vehicles

2008-10-07
2008-01-2643
La1-xAxNi1-yByO3 nanostructured perovskite-type oxides catalysts (where A = Na, K, Rb and B = Cu; x = 0, 0.2 and y = 0, 0.05, 0.1), also supporting 2% in weight of gold, were prepared via the so-called “Solution Combustion Synthesis (SCS)” method, and characterized by means of XRD, BET, FESEM-EDS and TEM analyses. The performance of these catalysts towards the simultaneous oxidation of soot and CO was evaluated. The 2 wt.% Au-La0.8K0.2Ni0.9Cu0.1O3 showed the best performance with a peak carbon combustion temperature of 367 °C and the half conversion of CO reached at 141 °C. The same nanostructured catalyst, deposited by in situ SCS directly over a SiC filter and tested on real diesel exhaust gases, fully confirmed the encouraging results obtained on the powder catalyst.
Technical Paper

DPF Supporting Nano-Structured Perovskite Catalysts for NOx and Diesel Soot Emission Control in Commercial Vehicles

2007-10-30
2007-01-4173
Nano-structured perovskite-type oxides catalysts La1-xAxFe1-yByO3 (where A = Na, K, Rb and B = Cu), prepared by the Solution Combustion Synthesis (SCS) method and characterized by BET, XRD, FESEM, AAS and catalytic activity tests in microreactors and engine bench, proved to be effective in the simultaneous removal of soot and NO, the two prevalent pollutants in diesel exhaust gases in the temperature range 350-450°C. The best compromise between soot and nitrogen oxide abatement was shown by La-K-Cu-FeO3 catalyst which displayed the highest catalytic activity towards carbon combustion and the highest NO conversion activity.
X