Refine Your Search

Topic

Author

Search Results

Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

Combustion and Emission Characteristics of Ammonia Jet Flames, Based on a Controllable Activated Thermal Atmosphere

2023-10-31
2023-01-1645
Ammonia is a new type of carbon-free fuel with low cost, clean and safe. The research and application of zero-carbon fuel internal combustion engines has become the mainstream of future development. However, there still exist problems should be solved in the application of ammonia fuel. Due to the lower flame laminar speed and higher ignition temperature, ammonia may have unstable combustion phenomena. In this work, the characteristics of ammonia combustion have been investigated, based on controllable thermal activated atmosphere burner. The ignition delay has been used to analyze the ammonia combustion characteristics. With the increase in co-flow temperature, the ignition delay of ammonia/air has an obvious decline. In order to investigate the emission characteristics of ammonia, CHEMKIN is used to validate the different chemical reaction mechanisms and analyse the ammonia emissions.
Technical Paper

Experimental and Numerical Investigation of a Passive Pre-Chamber Jet Ignition Single-Cylinder Engine

2021-09-05
2021-24-0010
In the framework of an increasing demand for a more sustainable mobility, where the fuel consumption reduction is a key driver for the development of innovative internal combustion engines, Turbulent Jet Ignition (TJI) represents one of the most promising solutions to improve the thermal efficiency. However, details concerning turbulent jet assisted combustion are still to be fully captured, and therefore the design and the calibration of efficient TJI systems require the support of reliable simulation tools that can provide additional information not accessible through experiments. To this aim, an experimental investigation combined with a 3D-CFD study was performed to analyze the TJI combustion characteristics in a single-cylinder spark-ignition (SI) engine. Firstly, the model was validated against experiments considering stoichiometric mixture at 3000 rpm, wide open throttle operating conditions.
Journal Article

Intake O2 Concentration Estimation in a Turbocharged Diesel Engine through NOE

2020-09-27
2020-24-0002
Diesel engines with their embedded control systems are becoming increasingly complex as the emission regulations tighten, especially concerning NOx pollutants. The combustion and emission formation processes are closely correlated to the intake manifold O2 concentration. Consequently, the performance of the engine controllers can be improved if a model-based or sensor-based estimation of the O2 concentration is available. The paper addresses the modeling of the O2 concentration in a turbocharged diesel engine. Dynamic models, compared to generally employed steady state maps, capture the dynamic effects occurring over transients, when the major deviations from the stationary maps are found. Dynamic models positively affect the control system making it more effective and, exploiting information coming from sensors, they provide a more robust prediction performance. Firstly, a Nonlinear Output Error model (NOE), with simulation focus, fed with four inputs is presented.
Technical Paper

Dual-Mass Flywheel with Torque Limiter: An Effective Solution for Overtorque Suppression in Automotive Transmission

2020-04-14
2020-01-1016
During some critical maneuvers, transmission systems using Dual Mass Flywheel (DMF) may experience overtorques, which could lead to structural damages of the transmission components. In a dual mass flywheel, total inertia is divided into two parts: a primary mass connected to the engine and a secondary mass to the transmission. The torque delivered by the engine is transferred from one mass to the other through a drive plate and a set of arc springs, the latter absorbing the torsional oscillations coming from internal combustion engine and the shocks caused by fast clutch engagements. This paper investigates overtorque issues and proposes a solution based on a torque limiter, consisting of a friction clutch inserted between the two masses, that limits the maximum torque transmitted through it. The basic idea is to replace the classic flat drive plate with a tapered drive plate that functions as a Belleville spring.
Technical Paper

Functionality Analysis of Thermoplastic Composite Material to Design Engine Components

2020-04-14
2020-01-0774
Developing of innovative technologies and materials to meet the requirements of environmental legislation on vehicle emissions has paramount importance for researchers and industries. Therefore, improvement of engine efficiency and fuel saving of modern internal combustion engines (ICEs) is one of the key factors, together with the weight reduction. Thermoplastic composite materials might be one of the alternative materials to be employed to produce engine components to achieve these goals as their properties can be engineered to meet application requirements. Unidirectional carbon fiber reinforced PolyEtherImide (CF/PEI) thermoplastic composite is used to design engine connecting rod and wrist pin, applying commercial engine data and geometries. The current study is focused on some elements of the crank mechanism as the weight reduction of these elements affects not only the curb weight of the engine but the overall structure.
Technical Paper

Analysis of the Impact of the WLTP Procedure on CO2 Emissions of Passenger Cars

2019-10-07
2019-24-0240
Until 2017 in Europe the Type Approval (TA) procedure for light duty vehicles for the determination of pollutant emissions and fuel consumption was based on the New European Driving Cycle (NEDC), a test cycle performed on a chassis dynamometer. However several studies highlighted significant discrepancies in terms of CO2 emissions between the TA test and the real world, due to the limited representativeness of the test procedure. Therefore, the European authorities decided to introduce a new, up-to date, test procedure capable to closer represent real world driving conditions, called Worldwide Harmonized Light Vehicles Test Procedure (WLTP). This work aims to analyze the effects of the new WLTP on vehicle CO2 emissions through both experimental and simulation investigations on two different Euro 5 vehicles, a petrol and a diesel car, representatives of average European passenger cars.
Technical Paper

The Effect of Post Injection Coupled with Extremely High Injection Pressure on Combustion Process and Emission Formation in an Off-Road Diesel Engine: A Numerical and Experimental Investigation

2019-09-09
2019-24-0092
In this paper, a numerical and experimental assessment of post injection potential for soot emissions mitigation in an off-road diesel engine is presented, with the aim of supporting hardware selection and engine calibration processes. As a case study, a prototype off-road 3.4 liters 4-cylinder diesel engine developed by Kohler Engines was selected. In order to explore the possibility to comply with Stage V emission standards without a dedicated aftertreatment for NOx, the engine was equipped with a low pressure cooled Exhaust Gas Recirculation (EGR), allowing high EGR rates (above 30%) even at high load. To enable the exploitation of such high EGR rates with acceptable soot penalties, a two-stage turbocharger and an extremely high-pressure fuel injection system (up to 3000 bar) were adopted. Moreover, post injections events were also exploited to further mitigate soot emissions with acceptable Brake Specific Fuel Consumption (BSFC) penalties.
Journal Article

Driving Cycle and Elasticity Manoeuvres Simulation of a Small SUV Featuring an Electrically Boosted 1.0 L Gasoline Engine

2019-09-09
2019-24-0070
In order to meet the CO2 emission reduction targets, downsizing coupled with turbocharging has been proven as an effective way in reducing CO2 emissions while maintaining and improving vehicle driveability. As the downsizing becomes widely exploited, the increased boost levels entail the exploration of dual stage boosting systems. In a context of increasing electrification, the usage of electrified boosting systems can be effective in the improvement of vehicle performances. The aim of this work is therefore to evaluate, through numerical simulation, the impact of different voltage (12 V or 48 V) electric superchargers (eSC) on an extremely downsized 1.0L engine on vehicle performance and fuel consumption over different transient manoeuvres.
Technical Paper

Assessment through Numerical Simulation of the Impact of a 48 V Electric Supercharger on Performance and CO2 Emissions of a Gasoline Passenger Car

2019-04-02
2019-01-1284
The demanding CO2 emission targets are fostering the development of downsized, turbocharged and electrified engines. In this context, the need for high boost level at low engine speed requires the exploration of dual stage boosting systems. At the same time, the increased electrification level of the vehicles enables the usage of electrified boosting systems aiming to exploit the opportunities of high levels of electric power and energy available on-board. The aim of this work is therefore to evaluate, through numerical simulation, the impact of a 48 V electric supercharger (eSC) on vehicle performance and fuel consumption over different transients. The virtual test rig employed for the analysis integrates a 1D CFD fast running engine model representative of a 1.5 L state-of-the-art gasoline engine featuring an eSC in series with the main turbocharger, a dual voltage electric network (12 V + 48 V), a six-speed manual transmission and a vehicle representative of a B-SUV segment car.
Technical Paper

Rapid Optimal Design of a Light Vehicle Hydraulic Brake System

2019-04-02
2019-01-0831
Designing automobile brake systems is generally complex and time consuming. Indeed, the brake system integrates several components and has to satisfy numerous conflicting government regulations. Due to these constraints, designing an optimal configuration is not easy. This paper consequently proposes a simple, intuitive and automated methodology that enables rapid optimal design of light vehicle hydraulic brake systems. Firstly, the system is modeled through cascaded analytical equations for each component. A large design space is then generated by varying the operational parameters of each component in its specific reasonable range. The system components under consideration include the brake pedal, the master cylinder, the vacuum-assisted booster, the brake line and the brake pistons. Successful system configurations are identified by implementing the requirements of the two most relevant safety homologation standards for light vehicle brake systems (US and EU legislations).
Technical Paper

Supercar Hybridization: A Synergic Path to Reduce Fuel Consumption and Improve Performance

2018-05-30
2018-37-0009
The trend towards powertrain electrification is expected to grow significantly in the next future also for super-cars. The aim of this paper is therefore to assess, through numerical simulation, the impact on both fuel economy and performance of different 48 Volt mild hybrid architectures for a high-performance sport car featuring a Turbocharged Direct Injection Spark Ignition (TDISI) engine. In particular the hybrid functionalities of both a P0 (Belt Alternator Starter - BAS) and a P2 (Flywheel Alternator Starter - FAS) architecture were investigated and optimized for this kind of application through a global optimization algorithm. The analysis pointed out CO2 emission reductions potential of about 6% and 25% on NEDC, 7% and 28% on WLTC for P0 and P2 respectively. From the performance perspective, a 10% reduction in the time-to-torque was highlighted for both architectures in a load step maneuver at 2000 RPM constant speed.
Journal Article

Active Tire Pressure Control (ATPC) for Passenger Cars: Design, Performance, and Analysis of the Potential Fuel Economy Improvement

2018-04-03
2018-01-1340
Active tire pressure control (ATPC) is an automatic central tire inflation system (CTIS), designed, prototyped, and tested at the Politecnico di Torino, which is aimed at improving the fuel consumption, safety, and drivability of passenger vehicles. The pneumatic layout of the system and the designed solution for on board integration are presented. The critical design choices are explained in detail and supported by experimental evidence. In particular, the results of experimental tests, including the characterizations of various pneumatic components in working conditions, have been exploited to obtain a design, which allows reliable performance of the system in a lightweight solution. The complete system has been tested to verify its dynamics, in terms of actuation time needed to obtain a desired pressure variation, starting from the current tire pressure, and to validate the design.
Technical Paper

Performance and Emission Comparison between a Conventional Euro VI Diesel Engine and an Optimized PCCI Version and Effect of EGR Cooler Fouling on PCCI Combustion

2018-04-03
2018-01-0221
Premixed charge compression ignition (PCCI) is an advanced combustion mode that has the aim of simultaneously reducing particulate matter and nitrogen oxide exhaust emissions, compared with conventional diesel combustion, thanks to a partially premixed charge and low temperature combustion. In this work, PCCI combustion has been implemented by means of an early single-injection strategy and large amounts of recirculated exhaust gas. Starting from a commercial Euro VI on-road engine, the engine hardware has been modified to optimize PCCI operations. This has involved adopting a smaller turbo group, a new combustion chamber and injectors, and a dedicated high-pressure exhaust gas recirculation system. The results, in terms of engine performance and exhaust emissions, under steady-state operation conditions, are presented in this work, where the original Euro VI calibration of the conventional engine has been compared with the PCCI calibration of the optimized hardware engine.
Technical Paper

Development through Simulation of a Turbocharged 2-Stroke G.D.I. Engine Focused on a Range-Extender Application

2017-11-05
2017-32-0121
An original 2-stroke prototype engine, equipped with an electronically controlled gasoline direct-injection apparatus, has been tested over the last few years, and the performances of these tests have been compared with those obtained using a commercial crankcase-scavenged 2-stroke engine. Very satisfactory results have been obtained, as far as fuel consumption and unburned hydrocarbons in the exhaust gas are concerned. Large reductions in fuel consumption and in unburned hydrocarbons have been made possible, because the injection timing causes all the injected gasoline to remain in the combustion chamber, and thus to take part in the combustion process. Moreover, a force-feed lubrication system, like those usually exploited in mass-produced 4-stroke engines, has been employed, because of the presence of an external pump. In fact, it is no longer necessary to add oil to the gasoline in the engine, as the gasoline does not pass through the crankcase volume.
Journal Article

Numerical Investigation on the Effects of Different Thermal Insulation Strategies for a Passenger Car Diesel Engine

2017-09-04
2017-24-0021
One of the key technologies for the improvement of the diesel engine thermal efficiency is the reduction of the engine heat transfer through the thermal insulation of the combustion chamber. This paper presents a numerical investigation on the effects of the combustion chamber insulation on the heat transfer, thermal efficiency and exhaust temperatures of a 1.6 l passenger car, turbo-charged diesel engine. First, the complete insulation of the engine components, like pistons, liner, firedeck and valves, has been simulated. This analysis has showed that the piston is the component with the greatest potential for the in-cylinder heat transfer reduction and for Brake Specific Fuel Consumption (BSFC) reduction, followed by firedeck, liner and valves. Afterwards, the study has been focused on the impact of different piston Thermal Barrier Coatings (TBCs) on heat transfer, performance and wall temperatures.
Journal Article

Model-Based Control of BMEP and NOx Emissions in a Euro VI 3.0L Diesel Engine

2017-09-04
2017-24-0057
A model-based approach to control BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed on a FPT F1C 3.0L Euro VI diesel engine for heavy-duty applications. The controller is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), in-cylinder pressure, BMEP and NOx engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. A new discretization scheme has been developed for the model equations, in order to reduce the accuracy loss when the computational step is increased. This has allowed the required computational time to be reduced to a great extent.
Journal Article

Development of a High Performance Natural Gas Engine with Direct Gas Injection and Variable Valve Actuation

2017-09-04
2017-24-0152
Natural gas is a promising alternative fuel for internal combustion engine application due to its low carbon content and high knock resistance. Performance of natural gas engines is further improved if direct injection, high turbocharger boost level, and variable valve actuation (VVA) are adopted. Also, relevant efficiency benefits can be obtained through downsizing. However, mixture quality resulting from direct gas injection has proven to be problematic. This work aims at developing a mono-fuel small-displacement turbocharged compressed natural gas engine with side-mounted direct injector and advanced VVA system. An injector configuration was designed in order to enhance the overall engine tumble and thus overcome low penetration.
Technical Paper

Numerical Simulation of the Combustion Process of a High EGR, High Injection Pressure, Heavy Duty Diesel Engine

2017-09-04
2017-24-0009
To comply with Stage IV emission standard for off-road engines, Kohler Engines has developed the 100kW rated KDI 3.4 liters diesel engine, equipped with DOC and SCR. Based on this engine, a research project in collaboration between Kohler Engines, Ricardo, Denso and Politecnico di Torino was carried out to exploit the potential of new technologies to meet the Stage IV and beyond emission standards. The prototype engine was equipped with a low pressure cooled EGR system, two stage turbocharger, high pressure fuel injection system capable of very high injection pressure and DOC+DPF aftertreatment system. Since the Stage IV emission standard sets a 0.4 g/kWh NOx limit for the steady state test cycle (NRSC), that includes full load operating conditions, the engine must be operated with very high EGR rates (above 30%) at very high load.
Technical Paper

A Fully Physical Correlation for Low Pressure EGR Control Linearization

2017-09-04
2017-24-0011
Nowadays stringent emission regulations are pushing towards new air management strategies like LP-EGR and HP/LP mix both for passenger car and heavy duty applications, increasing the engine control complexity. Within a project in collaboration between Kohler Engines EMEA, Politecnico di Torino, Ricardo and Denso to exploit the potential of EGR-Only technologies, a 3.4 liters KDI 3404 was equipped with a two stage turbocharging system, an extremely high pressure FIS and a low pressure EGR system. The LP-EGR system works in a closed loop control with an intake oxygen sensor actuating two valves: an EGR valve placed downstream of the EGR cooler that regulates the flow area of the bypass between the exhaust line and the intake line, and an exhaust flap to generate enough backpressure to recirculate the needed EGR rate to cut the NOx emission without a specific aftertreatment device.
X