Refine Your Search

Topic

Search Results

Technical Paper

Using Surface Texture Parameters to Relate Flat Belt Laboratory Traction Data to the Road

2015-04-14
2015-01-1513
Indoor laboratory tire testing on flat belt machines and tire testing on the actual road yield different results. Testing on the machine offers the advantage of repeatability of test conditions, control of the environmental condition, and performance evaluation at extreme conditions. However, certain aspects of the road cannot be reproduced in the laboratory. It is thus essential to understand the connection between the machine and the road, as tires spend all their life on the road. This research, investigates the reasons for differences in tire performance on the test machine and the road. The first part of the paper presents a review on the differences between tire testing in the lab and on the road, and existing methods to account for differences in test surfaces.
Journal Article

Fleetwide Safety Benefits of Production Forward Collision and Lane Departure Warning Systems

2014-04-01
2014-01-0166
Forward Collision Warning (FCW) and Lane Departure Warning (LDW) systems are two active safety systems that have recently been added to the U.S. New Car Assessment Program (NCAP) evaluation. Vehicles that pass confirmation tests may advertise the presence of FCW and LDW alongside the vehicle's star safety rating derived from crash tests. This paper predicts the number of crashes and injured drivers that could be prevented if all vehicles in the U.S. fleet were equipped with production FCW and/or LDW systems. Models of each system were developed using the test track data collected for 16 FCW and 10 LDW systems by the NCAP confirmation tests. These models were used in existing fleetwide benefits models developed for FCW and LDW. The 16 FCW systems evaluated could have potentially prevented between 9% and 53% of all rear-end collisions and prevented between 19% and 60% of injured (MAIS2+) drivers. Earlier warning times prevented more warnings and injuries.
Technical Paper

Model-Based Design of a Plug-In Hybrid Electric Vehicle Control Strategy

2013-04-08
2013-01-1753
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is participating in the 2011-2014 EcoCAR 2 competition in which the team is tasked with re-engineering the powertrain of a GM donated vehicle. The primary goals of the competition are to reduce well to wheels (WTW) petroleum energy use (PEU) and reduce WTW greenhouse gas (GHG) and criteria emissions while maintaining performance, safety, and consumer acceptability. To meet these goals HEVT has designed a series parallel plug-in hybrid electric vehicle (PHEV) with multiple modes of operation. This paper will first cover development of the control system architecture with a dual CAN bus structure to meet the requirements of the vehicle architecture. Next an online optimization control strategy to minimize fuel consumption will be developed. A simple vehicle plant model will then be used for software-in-the-loop (SIL) testing to improve fuel economy.
Journal Article

Control Strategy for the Excitation of a Complete Vehicle Test Rig with Terrain Constraints

2013-04-08
2013-01-0671
A unique concept for a multi-body test rig enabling the simulation of longitudinal, steering and vertical dynamics was developed at the Institute for Mechatronic Systems (IMS) at TU Darmstadt. A prototype of this IMS test rig is currently being built. In conjunction with the IMS test rig, the Vehicle Terrain Performance Laboratory (VTPL) at Virginia Tech further developed a full car, seven degree of freedom (7 DOF) simulation model capable of accurately reproducing measured displacement, pitch, and roll of the vehicle body due to terrain excitation. The results of the 7 DOF car model were used as the reference input to the multi-body IMS test rig model. The goal of the IMS/VTPL joint effort was to determine whether or not a controller for the IMS test rig vertical actuator could accurately reproduce wheel displacements due to different measured terrain constraints.
Technical Paper

Development of a Plug-In Hybrid Electric Vehicle Control Strategy Employing Software-In-the-Loop Techniques

2013-04-08
2013-01-0160
In an age of growing complexity with regards to vehicle control systems, verification and validation of control algorithms is a rigorous and time consuming process. With the help of rapid control prototyping techniques, designers and developers have cost effective ways of validating controls under a quicker time frame. These techniques involve developments of plant models that replicate the systems that a control algorithm will interface with. These developments help to reduce costs associated with construction of prototypes. In standard design cycles, iterations were needed on prototypes in order to finalize systems. These iterations could result in code changes, new interfacing, and reconstruction, among other issues. The time and resources required to complete these were far beyond desired. With the help of simulated interfaces, many of these issues can be recognized prior to physical integration.
Technical Paper

Refinement and Testing of an E85 Split Parallel EREV

2012-04-16
2012-01-1196
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended range hybrid electric vehicle. The competition requires participating teams to re-engineer a stock crossover utility vehicle donated by GM. The result of this design process is an Extended Range Electric Vehicle (EREV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design has achieved an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an all-electric range of 87 km (54 miles) [1].
Journal Article

Field Relevance of the New Car Assessment Program Lane Departure Warning Confirmation Test

2012-04-16
2012-01-0284
The availability of active safety systems, such as Lane Departure Warning (LDW), has recently been added as a rating factor in the U.S. New Car Assessment Program (NCAP). The objective of this study is to determine the relevance of the NCAP LDW confirmation test to real-world road departure crashes. This study is based on data collected as part of supplemental crash reconstructions performed on 890 road departure collisions from the National Automotive Sampling System, Crashworthiness Data System (NASS/CDS). Scene diagrams and photographs were examined to determine the lane departure and lane marking characteristics not available in the original data. The results suggest that the LDW confirmation test captures many of the conditions observed in real-world road departures. For example, 40% of all single vehicle collisions in the dataset involved a drift-out-of-lane type of departures represented by the test.
Journal Article

Battery Charge Balance and Correction Issues in Hybrid Electric Vehicles for Individual Phases of Certification Dynamometer Driving Cycles as Used in EPA Fuel Economy Label Calculations

2012-04-16
2012-01-1006
This study undertakes an investigation of the effect of battery charge balance in hybrid electric vehicles (HEVs) on EPA fuel economy label values. EPA's updated method was fully implemented in 2011 and uses equations which weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. For the US06 and UDDS cycles, the test results used in the computation come from individual phases within the overall certification driving cycles. This methodology causes additional complexities for hybrid vehicles, because although they are required to be charge-balanced over the course of a full drive cycle, they may have net charge or discharge within the individual phases. As a result, the fuel consumption value used in the label value calculation can be skewed.
Technical Paper

A Methodology for Laboratory Testing of Truck Cab Suspensions

2009-10-06
2009-01-2862
This work pertains to laboratory testing of truck cab suspensions for the purpose of improving in-cab ride quality. It describes the testing procedure of a complete truck cab suspension while still being mounted on the vehicle. It allows for testing with minimal amount of resources, limited to two mobile actuators and minimal modifications to the stock vehicle. The actuators can be attached to any axle through a set of modified brake drums and excite the drive axle in a vertical plane. The excitation signal sent to the actuators can be in phase for a heave type motion or out of phase for a roll motion. The chassis shock absorbers are replaced with rigid links to prevent the actuator input from becoming filtered by the primary suspension. This allows the input to reach the cab suspension more directly and the cab to be excited across a broader range of frequencies.
Journal Article

Comparison of the Performance of 7-Post and 8-Post Dynamic Shaker Rigs for Vehicle Dynamics Studies

2008-12-02
2008-01-2966
This paper documents a simple theoretical analysis and an experimental performance comparison of the advantages of an 8-post shaker rig relative to a conventional 7-post shaker rig. A simple static model describing the chassis roll and warp characteristics is first presented to illustrate the differences between 7-post and 8-post configurations, and the conditions where an additional aeroloader provides an advantage. Using a late model NASCAR Sprint Cup car, a series of experimental tests were conducted with the 8-post shaker rig at the Virginia Institute for Performance Engineering and Research (VIPER) facility in both 7-post and 8-post configurations. Experimental results confirm the hypothesis that an 8-post configuration is able to more accurately reproduce target motions of the chassis and suspension when those motions include a chassis warp condition.
Technical Paper

Sensitivity of Preferred Driving Postures and Determination of Core Seat Track Adjustment Ranges

2007-06-12
2007-01-2471
With advances in virtual prototyping, accurate digital modeling of driving posture is regarded as a fundamental step in the design of ergonomic driver-seat-cabin systems. Extensive work on driving postures has been carried out focusing on the measurement and prediction of driving postures and the determination of comfortable joint angle ranges. However, studies on postural sensitivity are scarce. The current study investigated whether a driver-selected posture actually represents the most preferred one, by comparing the former with ratings of postures selected at 20 predefined places around the original hip joint center (HJC). An experiment was undertaken in a lab setting, using two distinctive driving package geometries: one for a sedan and the other for an SUV. The 20 postural ratings were compared with that of the initial user-selected position.
Technical Paper

Can Semiactive Dampers with Skyhook Control Improve Roll Stability of Passenger Vehicles?

2004-05-04
2004-01-2099
Skyhook control has been used extensively for semiactive dampers for a variety of applications, most widely for passenger vehicle suspensions. This paper provides an experimental evaluation of how well skyhook control works for improving roll stability of a passenger vehicle. After discussing the formulation for various semiactive control methods that have been suggested in the past for vehicle suspensions, the paper includes the implementation of a semiactive system with magneto-rheological (MR) dampers on a sport utility vehicle. The vehicle is used for a series of road tests that includes lane change maneuvers, with different types of suspensions. The suspensions that are tested include the stock suspension, the uncontrolled MR dampers, skyhook control, and a new semiactive control method called “SIA skyhook.” The SIA Skyhook augments the conventional skyhook control with steering input, in order to account for the suspension requirements during a lateral maneuver.
Technical Paper

Control of Interior Pressure Fluctuations Due to Flow Over Vehicle Openings

1999-05-17
1999-01-1813
Grazing flows over open windows or sunroofs may result in “flow buffeting,” i.e. self-sustained flow oscillations at the Helmholtz acoustic resonance frequency of the vehicle. The associated pressure fluctuations may cause passenger fatigue and discomfort. Many solutions have been proposed to solve this problem, including for example leading edge spoilers, trailing edge deflectors, and leading edge flow diffusers. Most of these control devices are “passive” i.e. they do not involve dynamic control systems. Active control methods, which do require dynamic controls, have been implemented with success for different cases of flow instabilities. Previous investigations of the control of flow-excited cavity resonance have used mainly one or more loudspeakers located within the cavity wall. In this study, oscillated spoilers hinged near the leading edge of the cavity orifice were used. Experiments were performed using a cavity installed within the test section wall of a wind tunnel.
Technical Paper

Pressure Fluctuations in a Flow-Excited Door Gap Cavity Model

1997-05-20
971923
The flow-induced pressure fluctuations in a door gap cavity model were investigated experimentally using a quiet wind tunnel facility. The cavity cross-section dimensions were typical of road vehicle door cavities, but the span was only 25 cm. One cavity wall included a primary bulb rubber seal. A microphone array was used to measure the cavity pressure field over a range of flow velocities and cavity configurations. It was found that the primary excitation mechanism was an “edge tone” phenomenon. Cavity resonance caused amplification around discrete frequencies, but did not cause the flow disturbances to lock-on. Possible fluid-elastic coupling related to the presence of a compliant wall was not significant. A linear spectral decomposition method was then used to characterize the cavity pressure in the frequency domain, as the product of a source spectral distribution function and an acoustic frequency response function.
Technical Paper

Active Control of Wind Noise Using Robust Feedback Control

1997-05-20
971891
A feedback controller bas been developed using robust control techniques to control the sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain loop shaping techniques. System uncertainty, sound pressure level reductions, and actuator constraints are included in the design process. For the wind noise problem, weighting factors have been included to distinguish between the importance of modes that radiate sound and those that do not radiate. The wind noise controller has been implemented in the quiet wind tunnel facility at the Ray W. Herrick Laboratories at Purdue University. A multiple-input, multiple-output controller using accelerometer feedback and shaker control was able to achieve control up to 1000 Hz. Sound pressure level reductions of as much as 15 dB were achieved at the frequencies of the plates modes. Overall reductions over the 100-1000 Hz band were approximately 5 dB.
Technical Paper

Sound Transmission Through Primary Bulb Rubber Sealing Systems

1997-05-20
971903
Structural sound transmission through primary bulb (PB) sealing systems was investigated. A two-degrees-of-freedom analytical model was developed to predict the sound transmission characteristics of a PB seal assembly. Detailed sound transmission measurements were made for two different random excitations: acoustic and aerodynamic. A reverberation room method was first used, whereby a seal sample installed within a test fixture was excited by a diffuse sound field. A quiet flow facility was then used to create aerodynamic pressure fluctuations which acted as the excitation. The space-averaged input pressure within the pseudo door gap cavity and the sound pressure transmitted on the quiescent side of the seal were obtained in each case for different cavity dimensions, seal compression, and seal designs. The sound transmission predictions obtained from the lumped element model were found to be in reasonable agreement with measured values.
Technical Paper

The Design and Operation of a Turbocharger Test Facility Designed for Transient Simulation

1997-02-24
970344
The turbocharger, consisting of a radial or axial flow turbine and an radial flow compressor presents perhaps one of the most challenging tasks to the turbomachinery designer. Due to the necessity of speed changes in the diesel engine, the turbocharger transits a wide variety of operating points in its normal operation. During an engine speed acceleration or deceleration there will be a lag in the required air delivery to the engine, resulting in increased smoke emission and limiting the power delivered by the engine. In order to investigate the dynamic performance of a turbocharged engine, an essential first step must be the development of an adequate model for transient characteristics of the turbocharger. One of the significant problems that must be overcome for the modeling effort to be successful is a detailed experimental description of the transient performance of the device.
Technical Paper

Aerodynamic Evaluation of Two Maglev Designs

1996-02-01
960905
Wind tunnel tests were conducted on two variations of a Grumman design for a Maglev vehicle The tests employed a moving belt system simulation of an elevated track which was designed to properly simulate the flowfield for Maglev vehicle configurations of the EMS type where the vehicle undercarriage partially wraps around or encloses the track Lift and drag forces and vehicle pitching moments were measured over a wide range of Reynolds number and the results compared with computations made by Grumman The tests also included measurements of flowfield velocity and turbulence profiles downstream of the vehicles and pressure measurements over the vehicle nose The test results showed a slight difference between the two designs with a possible reason to give preference to one of the designs due to reduced pitching moment.
Technical Paper

Laboratory Method for Evaluating the Sound Transmission Characteristics of Primary Bulb Body Seals

1996-02-01
960193
A laboratory method was developed to evaluate the sound transmission characteristics of road vehicle body seals. Primary bulb seal samples were mounted in a fixture which approximated the geometry of a typical door-gap cavity. The seal fixture was integrated with a rigid panel into the floor of a quiet, low-speed, closed test-section wind tunnel. Flow-excited pressure fluctuations in the door-gap cavity were induced by the air stream instead of by sound waves in a quiescent environment as in standard transmission loss measurements. A soundproof anechoic enclosure located underneath the test-section floor isolated the sound receiver. The sound level reduction between the cavity pressure and the sound pressure into the enclosure, a quantity directly related to the sound transmission loss (TL) in this case, was measured accurately between the 1250 and 5000 Hz one-third octave bands.
Technical Paper

A Fuel Economy Evaluation of a Safety Compliant Single Passenger Vehicle

1992-09-01
921664
The Nexus vehicle was designed and built for Transport Canada at the University of Saskatchewan to demonstrate that a safety compliant single passenger commuter vehicle could attain extremely low fuel consumption rates at modest highway speeds. Experimentally determined steady state fuel consumption rates of the Nexus prototype ranged from 1.6 L/100 km at 61 km/hr up to 2.8 L/100 km at 121 km/hr. Fuel consumption rates for the Society of Automotive Engineers (SAE) driving cycle tests were 4.5 L/100 km for the SAE Urban cycle and 2.0 L/100 km for the SAE Interstate 55 cycle. The efficiency of the power train was determined using a laboratory dynamometer, enabling the road test results to be compared to the results from an energy and performance simulation program. Predicted fuel economy was in good agreement with that determined experimentally. Widespread use of single passenger commuter vehicles would substantially reduce current transportation energy consumption.
X