Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Research on Joining High Pressure Die Casting Parts by Self-Pierce Riveting (SPR) Using Ring-Groove Die Comparing to Heat Treatment Method

Nowadays, the increasing number of structural high pressure die casting (HPDC) aluminum parts need to be joined with high strength steel (HSS) parts in order to reduce the weight of vehicle for fuel-economy considerations. Self-Pierce Riveting (SPR) has become one of the strongest mechanical joining solutions used in automotive industry in the past several decades. Joining HPDC parts with HSS parts can potentially cause joint quality issues, such as joint button cracks, low corrosion resistance and low joint strength. The appropriate heat treatment will be suggested to improve SPR joint quality in terms of cracks reduction. But the heat treatment can also result in the blister issue and extra time and cost consumption for HPDC parts. The relationship between the microstructure of HPDC material before and after heat treatment with the joint quality is going to be investigated and discussed for interpretation of cracks initiation and propagation during riveting.
Technical Paper

Fatigue Damage Modeling Approach Based on Evolutionary Power Spectrum Density

Fatigue damage prediction approaches in both time and frequency domains have been developed to simulate the operational life of mechanical structures under random loads. Fatigue assessment of mechanical structures and components subjected to those random loads is increasingly being addressed by frequency domain approaches because of time and cost savings. Current frequency-based fatigue prediction methods focus on stationary random loadings (stationary Power Spectral Density), but many machine components, such as jet engines, rotating machines, and tracked vehicles are subjected to non-stationary PSD conditions under real service loadings. This paper describes a new fatigue damage modeling approach capable of predicting fatigue damage for structures exposed to non-stationary (evolutionary) PSD loading conditions where the PSD frequency content is time-varying.
Journal Article

A Computational Multiaxial Model for Stress-Strain Analysis of Ground Vehicle Notched Components

Driveline and suspension notched components of off-road ground vehicles often experience multiaxial fatigue failures along notch locations. Large nominal load histories may induce local elasto-plastic stress and strain responses at the critical notch locations. Fatigue life prediction of such notched components requires detailed knowledge of local stresses and strains at notch regions. The notched components that are often subject to multiaxial loadings in services, experience complex stress and strain responses. Fatigue life assessment of the components utilizing non-linear Finite Element Analysis (FEA) require unfeasibly inefficient computation times and large data. The lack of more efficient and effective methods of elasto-plastic stress-strain calculation may lead to the overdesign or earlier failures of the components or costly experiments and inefficient non-linear FEA.
Journal Article

Effects of Controlled Modulation on Surface Textures in Deep-Hole Drilling

Deep-hole drilling is among the most critical precision machining processes for production of high-performance discrete components. The effects of drilling with superimposed, controlled low-frequency modulation - Modulation-Assisted Machining (MAM) - on the surface textures created in deep-hole drilling (ie, gun-drilling) are discussed. In MAM, the oscillation of the drill tool creates unique surface textures by altering the burnishing action typical in conventional drilling. The effects of modulation frequency and amplitude are investigated using a modulation device for single-flute gun-drilling on a computer-controlled lathe. The experimental results for the gun-drilling of titanium alloy with modulation are compared and contrasted with conventional gun-drilling. The chip morphology and surface textures are characterized over a range of modulation conditions, and a model for predicting the surface texture is presented. Implications for production gun-drilling are discussed.
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Technical Paper

Water and Energy Transport for Crops under Different Lighting Conditions

When high-intensity discharge (HID) electric lamps are used for plant growth, system inefficiencies occur due to an inability to effectively target light to all photosynthetic tissues of a growing crop stand, especially when it is closed with respect to light penetration. To maintain acceptable crop productivity, light levels typically are increased thus increasing heat loads on the plants. Evapotranspiration (ET) or transparent thermal barrier systems are subsequently required to maintain thermal balance, and power-intensive condensers are used to recover the evaporated water for reuse in closed systems. By accurately targeting light to plant tissues, electric lamps can be operated at lower power settings and produce less heat. With lower power and heat loads, less energy is used for plant growth, and possibly less water is evapotranspired. By combining these effects, a considerable energy savings is possible.
Technical Paper

Surfactant Biodegradation for Application to Advanced Life Support Water Recycling Systems

Complete reuse of graywater will be essential during long duration human space missions. The highest loaded and most important component to remove from graywater is surfactant, the active ingredient in soaps and detergents. When considering a biological treatment system for processing of graywater, surfactant biodegradability becomes a very important consideration. Surfactants should be chosen that are degraded at a fast rate and yield inconsequential degradation byproducts. Experiments conducted for this research examined the biodegradation of the surfactants in Pert Plus for Kids, disodium cocoamphodiacetate (DSCADA) and sodium laureth-3 sulfate (SLES), using respirometry. Rates of CO2 production, or ultimate degradation, are reported. DSCADA was found to be toxic to bacteria when present at 270 ppm whereas no toxicity was observed during experiments with SLES.
Technical Paper

Numerical Modeling of the Damping Effect of Fibrous Acoustical Treatments

The damping effect that is observed when a fibrous acoustical treatment is applied to a thin metal panel typical of automotive structures has been modeled by using three independent techniques. In the first two methods the fibrous treatment was modeled by using the limp frame formulation proposed by Bolton et al., while the third method makes use of a general poro-elastic model based on the Biot theory. All three methods have been found to provide consistent predictions that are in excellent agreement with one another. An examination of the numerical results shows that the structural damping effect results primarily from the suppression of the nearfield acoustical motion within the fibrous treatment, that motion being closely coupled with the vibration of the base panel. The observed damping effect is similar in magnitude to that provided by constrained layer dampers having the same mass per unit area as the fibrous layer.
Technical Paper

Fracture Mechanics Based Approach for Quantifying Corrosion Damage

The objective of this project is to quantify structural degradation due to corrosion through a fracture mechanics based approach. The metric parameters employed are Equivalent Initial Flaw Size and general material loss. Another objective is to correlate a measurable property to the amount of structural durability damage from corrosion, ideally through current NDE technology, with eddy-current as the primary choice. The approach is comprised by the following areas: corroding aluminum alloys, evaluation of the corrosion through techniques such as surface roughness and eddy current, cyclic testing, calculation of corrosion metric, and, correlation between corrosion metric and physically measurable properties.