Refine Your Search


Search Results

Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Technical Paper

Effects of Biofuels on the Mixture Formation and Ignition Process in Diesel-Like Jets

In order to reduce engine out CO2 emissions it is a main subject to find new alternative fuels out of renewable sources. For this paper, several fuels were selected which can be produced out of biomass or with hydrogen which is generated directly via electrolysis with electricity from renewable sources. All fuels are compared to conventional diesel fuel and two diesel surrogates. It is well known that there can be a large effect of fuel properties on mixture formation and combustion, which may result in a completely different engine performance compared to the operation with conventional diesel fuels. Mixture formation and ignition behavior can also largely affect the pollutant formation. The knowledge of the combustion behavior is also important to design new engine geometries or implement new calibrations for an existing engine. The fuel properties of the investigated fuels comprise a large range, for example in case of the derived cetane number, from below 30 up to 100.
Journal Article

Assessment of the Full Thermodynamic Potential of C8-Oxygenates for Clean Diesel Combustion

Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB) at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for combustion in a Diesel engine. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines (SCE). For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load (2400 min-1, 14.8 bar IMEP), the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
Technical Paper

Assessment of the Approximation Formula for the Calculation of Methane/Air Laminar Burning Velocities Used in Engine Combustion Models

Especially for internal combustion engine simulations, various combustion models rely on the laminar burning velocity. With respect to computational time needed for CFD, the calculation of laminar burning velocities using a detailed chemical mechanism can be replaced by incorporation of approximation formulas, based on rate-ratio asymptotics. This study revisits an existing analytical approximation formula [1]. It investigates applicable temperature, pressure, and equivalence ratio ranges with special focus on engine combustion conditions. The fuel chosen here is methane and mixtures are composed of methane and air. The model performance to calculate the laminar burning velocity are compared with calculated laminar burning velocities using existing state of the art detailed chemical mechanisms, the GRI Mech 3.0 [2], the ITV RWTH [3], and the Aramco mechanism [4].
Journal Article

Laser-Induced Incandescence Measurements of Tailor-Made Fuels in an Optical Single-Cylinder Diesel Engine

The influence of two oxygenated tailor-made fuels on soot formation and oxidation in an optical single cylinder research diesel engine has been studied. For the investigation a planar laser-induced incandescence (PLII) measurement technique was applied to the engine in order to detect and evaluate the planar soot distribution for the two bio fuels within a laser light sheet. Furthermore the OH* chemiluminescence and broad band soot luminosity was visualized by high speed imaging to compare the ignition and combustion behavior of tested fuels: Two C8 oxygenates, di-n-butylether (DNBE) and 1-octanol. Both fuels have the same molecular formula but differ in their molecular structure. DNBE ignites fast and burns mostly diffusive while 1-octanol has a low cetane number and therefore it has a longer ignition delay but a more homogeneous mixture at time of ignition. The two bio fuels were finally compared to conventional diesel fuel.
Technical Paper

Lower Emissions in Commercial Diesel Engines through Waste Heat Recovery

In order to comply with demanding Greenhous Gas (GHG) standards, future automotive engines employ advanced engine technologies including waste heat recovery (WHR) systems. A waste heat recovery system converts part of engine wasted exergies to useful work which can be fed back to the engine. Utilizing this additional output power leads to lower specific fuel consumption and CO2 emission when the total output power equals the original engine output power. Engine calibration strategies for reductions in specific fuel consumption typically results in a natural increase of NOx emissions. The utilization of waste heat recovery systems provides a pathway which gives both reduction in emissions and reduction in specific fuel consumption. According to DOE (Department of Energy), US heavy-duty truck engines’ technology need to be upgraded towards higher brake thermal efficiencies (BTE). DOE target is BTE>55% for Class-8 heavy-duty vehicles in the United States.
Technical Paper

Modeling of Transport and Mixing Phenomena in Turbulent Flows in Closed Domains

In this work, a transport and mixing model that calculates mixing in thermodynamic phase space was derived and validated. The mixing in thermodynamic multizone space is consistent to the one in the spatially resolved physical space. The model is developed using a turbulent channel flow as simplified domain. This physical domain of a direct numerical simulation (DNS) is divided into zones based on the quantitative value of transported scalars. Fluxes between the zones are introduced to describe mixing from the transport equation of the probability density function based on the mixing process in physical space. The mixing process of further scalars can then be carried out with these fluxes instead of solving additional transport equations. The relationship between the exchange flux in phase space and the concept of scalar dissipation are shown and validated by comparison to DNS results.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Partially Premixed Combustion of Gasoline Type Fuels Using Larger Size Nozzle and Higher Compression Ratio in a Diesel Engine

If fuels that are more resistant to auto-ignition are injected near TDC in compression ignition engines, they ignite much later than diesel fuel and combustion occurs when the fuel and air have had more chance to mix. This helps to reduce NOX and smoke emissions at much lower injection pressures compared to a diesel fuel. However, PPCI (Partially Premixed Compression Ignition) operation also leads to higher CO and HC at low loads and higher heat release rates at high loads. These problems can be significantly alleviated by managing the mixing through injector design (e.g. nozzle size and centreline spray angle) and changing CR (Compression Ratio). This work describes results of running a single-cylinder diesel engine on fuel blends by using three different nozzle design (nozzle size: 0.13 mm and 0.17 mm, centreline spray angle: 153° and 120°) and two different CRs (15.9:1 and 18:1).
Journal Article

Optical Investigation of Combusting Split-Injection Diesel Sprays Under Quiescent Conditions

Multiple-injection strategies are widely used in DI diesel engines. However, the interaction of the injection pulses is not yet fully understood. In this work, a split injection into a combustion vessel is studied by multiple optical imaging diagnostics. The vessel provides quiescent high-temperature, high-pressure ambient conditions. A common-rail injector which is equipped with a three-hole nozzle is used. The spray is visualized by Mie scattering. First and second stage of ignition are probed by formaldehyde laser-induced fluorescence (LIF) and OH* chemiluminescence imaging, respectively. In addition formation of soot is characterized by both laser-induced incandescence (LII) and natural luminosity imaging, showing that low-sooting conditions are established. These qualitative diagnostics yield ensemble-averaged, two-dimensional, time-resolved distributions of the corresponding quantities.
Journal Article

Towards Model-Based Identification of Biofuels for Compression Ignition Engines

Depleting fossil resources, a constantly rising energy demand and worries about greenhouse gas emissions force society to explore novel concepts for future mobile propulsion. In the context of biofuels, the identification of novel, sustainably producible, tailored molecules meeting the property specifications derived from advanced engine combustion concepts therefore constitutes a major objective. Due to the tremendous amount of possible molecular structures, solely experimental search strategies are infeasible and highlight the need for a computer-aided biofuel identification framework. To this end, a holistic approach for deriving truly predictive Quantitative-Structure-Property-Relationships (QSPRs) for engine-relevant fuel properties is presented. Such QSPRs are combined with a rigorous generation of molecular structures aiming at identification of single-compound fuel candidates for use in compression ignition (CI) engines.
Technical Paper

A Reduced Kinetic Reaction Mechanism for the Autoignition of Dimethyl Ether

A reduced kinetic reaction mechanism for the autoignition of dimethyl ether is presented in this paper. Dimethyl ether has proven to be one of the most attractive alternatives to traditional fossil fuels for compression ignition engines. It can either be produced from biomass or from fossil oil. For dimethyl ether, Fischer et al. (Int. J.Chem. Kinet. 32 ( 12 ) (2000) 713-740) proposed a detailed reaction mechanism consisting of 79 species and 351 elementary reactions. In the present work, this detailed mechanism is systematically reduced to 31 species and 49 reactions. The reduced mechanism is discussed in detail with special emphasis on the high temperature thermal decomposition of dimethyl ether and on the fuel specific depleting reactions, which produce the methoxymethyl radical. In addition, a reaction pathway analysis for low temperature combustion is applied, where hydroperoxy-methylformate is found to be the dominating parameter for the low temperature regime.
Technical Paper

Experimental Investigation of the Spray Characteristics of Di-n-Butyl Ether (DNBE) as an Oxygenated Compound in Diesel Fuel

Increasing concern for the environment and the impending scarcity of fossil fuels requires continued development in hydrocarbon combustion science. For compression-ignition engines, adding oxygenated compounds to the fuel can reduce noise, soot formation, and unburned hydrocarbons while simultaneously increasing thermal efficiency. In order to reliably model and design compression-ignition engines to use new fuel blends, accurate spray characteristic data is required. In this study, the spray characteristics of various blends of the oxygenated compound di-n-butyl ether (DNBE) with standard EN590 Diesel fuel are presented, including spray cone angle and spray penetration length for both liquid and gas phases. The experiments were conducted in a spray chamber at ambient conditions of 50 bar and 800 K, simulating TDC conditions in a Diesel engine. Injection pressures were varied from 700-1600 bar.
Technical Paper

Tailor-Made Fuels: The Potential of Oxygen Content in Fuels for Advanced Diesel Combustion Systems

Fuels derived from biomass will most likely contain oxygen due to the high amount of hydrogen needed to remove oxygen in the production process. Today, alcohol fuels (e. g. ethanol) are well understood for spark ignition engines. The Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of alcohol fuels as candidates for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. The soot formation and oxidation process when using alcohol fuels in diesel engines is not yet sufficiently understood. Depending on the chain length, alcohol fuels vary in cetane number and boiling temperature. Decanol possesses a diesel-like cetane number and a boiling point in the range of the diesel boiling curve. Thus, decanol was selected as an alcohol representative to investigate the influence of the oxygen content of an alcohol on the combustion performance.
Technical Paper

An Experimental Investigation of Combustion and Soot Formation of Sprays from Cluster Nozzles for DI Diesel Engines

One of the basic topics in the design of new injection systems for DI Diesel engines is to decrease the soot emissions. A promising approach to minimize soot production are nozzles with clustered holes. A basic idea of the Cluster Configuration (CC) nozzles is to prevent a fuel rich area in the center of the flame where most of the soot is produced, and to minimize the overall soot formation in this way. For this purpose each hole of a standard nozzle is replaced by two smaller holes. The diameter of the smaller holes is chosen so that the flow rate of all nozzles should be equal. The basic strategy of the cluster nozzles is to provide a better primary break up and therefore a better mixture formation caused by the smaller nozzle holes, but a comparable penetration length of the vapor phase due to merging of the sprays. Three possible arrangements of the clustered holes are investigated in this study. Both the cluster angle and the orientation to the injector axis are varied.
Technical Paper

Injection Rate Shaping Investigations on a Small – Bore DI Diesel Engine

So far, the effect of injection rate shaping on the diesel combustion in small-bore DI diesel engines has not been extensively investigated, especially at high part load conditions with high EGR rates. The benefit of injection rate shaping is already verified for heavy duty engines at high load conditions with and without EGR. For this investigation, single cylinder engine investigations were conducted at the VKA / RWTH Aachen University. In order to meet the future NOx legislation limits like US-Tier2Bin5 it is crucial to reduce NOx especially at the high load points of the certification cycles, as FTP75 or US06. For the single cylinder investigations two part load points were chosen, which have relevance for the mentioned certification cycles. The experimental work focuses on different rate shapes as rectangular (Common-Rail type), ramp and boot shape at high EGR rates.
Technical Paper

Influence of the Nozzle Spray Angle on Pollutant Formation and Combustion Efficiency for a PCCI Diesel Engine

In Common-Rail DI Diesel Engines, a low combustion temperature process is considered as one of the most important possibilities to achieve very small emissions and optimum performance. To reduce NOx and Soot strongly, it is necessary to achieve a homogenization of the mixture in order to avoid the higher local temperatures which are responsible for the NOx formation [1]. Through the homogenization it is also possible to obtain a stoichiometric air-fuel ratio in order to significantly reduce the Soot emissions. One way to achieve this homogeneous condition is to start injection very early together with the use of higher EGR rates. The direct effect of these conditions cause a longer ignition delay (this is the time between start of the injection and auto-ignition during physical and chemical sub processes such as fuel atomization, evaporation, fuel air mixing and chemical pre-reactions take place) so that the mixture formation has more time to achieve a homogeneous state.
Journal Article

A Cycle-Based Multi-Zone Simulation Approach Including Cycle-to-Cycle Dynamics for the Development of a Controller for PCCI Combustion

Subject of this work is a simulation model for PCCI combustion that can be used in closed-loop control development. A detailed multi-zone chemistry model for the high-pressure part of the engine cycle is extended by a mean value model accounting for the gas exchange losses. The resulting model is capable of describing PCCI combustion with stationary excactness. It is at the same time very economic with respect to computational costs. The model is further extended by identified system dynamics influencing the stationary inputs. For this, a Wiener model is set up that uses the stationary model as a nonlinear system representation. In this way, a dynamic nonlinear model for the representation of the controlled plant Diesel engine is created.
Journal Article

Coking Phenomena in Nozzle Orifices of Dl-Diesel Engines

Within a public founded project test cell investigations were undertaken to identify parameters which predominantly influence the development of critical deposits in injection nozzles. A medium-duty diesel engine was operated in two different coking cycles with a zinc-free lubricant. One of the cycles is dominated by rated power, while the second includes a wide area of the operation range. During the experiments the temperatures at the nozzle tip, the geometries of the nozzle orifice and fuel properties were varied. For a detailed analysis of the deposits methods of electron microscopy were deployed. In the course of the project optical access to all areas in the nozzle was achieved. The experiments were evaluated by means of the monitoring of power output and fuel flow at rated power. The usage of a SEM (scanning electron microscope) and a TEM (transmission electron microscope) revealed images of the deposits with a magnification of up to 160 000.
Technical Paper

Experimental Investigation of the Effect of Multiple Injections on Pollutant Formation in a Common-Rail DI Diesel Engine

In Common-Rail DI Diesel Engines, multiple injection strategies are considered as one of the methodologies to achieve optimum performance and emission reduction. However, multiple injections open a whole new horizon of parameters which affect the combustion process. These parameters include the number of injection events, the duration between the starts of each injection event, the splitting of the total fuel mass on the different injection events, etc. In the present work, the influence of the number of injection events and the influence of the duration between the starts of each injection event on emission levels are investigated. Combustion and pollutant formation were experimentally investigated in a Common-Rail DI Diesel engine. The engine was operated at conventional part-load conditions with 2000 rpm, no external EGR, and an injected fuel mass of 15 mg/cycle.