Refine Your Search

Topic

Author

Search Results

Technical Paper

Validation of Eulerian-Lagrangian Spray Atomization Modeling against Gasoline Fuel

2021-02-24
2021-01-5027
Combustion in any engine starts with the injection of fuel into the combustion chamber. Atomization of fuel and its mixing plays a vital role in determining the suitable air-fuel (A/F) ratio. Appropriate A/F ratio determines the amount of energy release and pollutant formation for standard engines. Thus an accurate prediction of these processes is required to perform reliable combustion and pollutant formation simulations. In this study, the Eulerian-Lagrangian Spray Atomization (ELSA) model is implemented as a Computational Fluid Dynamics (CFD) tool for the prediction of spray behavior. Past studies performed on diesel fuel suggest good agreement between experiment and simulation indicating the model’s capability. The study aims to validate the ELSA model for gasoline fuel against the test results obtained from Renault and against the pure Lagrangian spray model. The simulations have been performed using CONVERGE CFD v2.4.18.
Technical Paper

Simulation Strategy for Structure Borne Noise Sources: Use of Super Elements and Blocked Forces Tensors between Suppliers and OEMs to Validate Components at Early Design Stage

2018-06-13
2018-01-1509
This paper is a case study from the TESSA project (French funded research program “Transfert des Efforts des Sources Solidiennes Actives”). The general frame of the work was to assess a collaborative design process between a car manufacturer and a major supplier using FE modelling and condensation of structure borne noise sources as an alternative to classic specification method for structure borne sources. Super elements from different FE commercial softwares have been used to assess the reliability of the method, the compatibility of the softwares and, most important, the relevance of applying a blocked force tensor to the component super element to predict the interior contribution of a component which is the originality of this work. The case study is an internal combustion engine cooling module (fan + shroud + exchangers) from VALEO including all assembly details (clips, decoupling elements) modelled under ABAQUS and its integration in a RENAULT Espace under NASTRAN.
Technical Paper

Analysis of Systematic Calibration of Heat Transfer Models on a Turbocharged GDI Engine Operating Map

2018-04-03
2018-01-0787
In order to simulate the working process, an accurate description of heat transfer occurring between in-cylinder gases and combustion chamber walls is required, especially regarding thermal efficiency, combustion and emissions, or cooling strategies. Combustion chamber wall heat transfer models are dominated by zero-dimensional semi-empirical models due to their good compromise between accuracy, complexity and computational efficiency. Classic models such as those from Woschni, Annand or Hohenberg are still widely used, despite having been developed on rather ancient engines. While numerous authors have worked on this topic in the past decades, little information can be found concerning the systematic calibration process of heat transfer models. In this paper, a systematic calibration method based on experimental data processing is tested on the complete operating map of a turbocharged GDI engine.
Technical Paper

Experimental and Numerical Analysis of Diluted Combustion in a Direct Injection CNG Engine Featuring Post- Euro-VI Fuel Consumption Targets

2018-04-03
2018-01-1142
The present paper is concerned with part of the work performed by Renault, IFPEN and Politecnico di Torino within a research project founded by the European Commission. The project has been focused on the development of a dedicated CNG engine featuring a 25% decrease in fuel consumption with respect to an equivalent Diesel engine with the same performance targets. To that end, different technologies were implemented and optimized in the engine, namely, direct injection, variable valve timing, LP EGR with advanced turbocharging, and diluted combustion. With specific reference to diluted combustion, it is rather well established for gasoline engines whereas it still poses several critical issues for CNG ones, mainly due to the lower exhaust temperatures. Moreover, dilution is accompanied by a decrease in the laminar burning speed of the unburned mixture and this generally leads to a detriment in combustion efficiency and stability.
Technical Paper

Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine

2017-03-28
2017-01-0669
The current trend of downsizing used in gasoline engines, while reducing fuel consumption and CO2 emissions, imposes severe thermal loads inside the combustion chamber. These critical thermodynamic conditions lead to the possible auto-ignition (AI) of fresh gases hot-spots around Top-Dead-Center (TDC). At this very moment where the surface to volume ratio is high, wall heat transfer influences the temperature field inside the combustion chamber. The use of a realistic wall temperature distribution becomes important in the case of a downsized engine where fresh gases hot spots found near high temperature walls can initiate auto-ignition. This paper presents a comprehensive numerical methodology for an accurately prediction of thermodynamic conditions inside the combustion chamber based on Conjugate Heat Transfer (CHT).
Technical Paper

Experimental Study of Automotive Turbocharger Turbine Performance Maps Extrapolation

2016-04-05
2016-01-1034
Engine downsizing is potentially one of the most effective strategies being explored to improve fuel economy. A main problem of downsizing using a turbocharger is the small range of stable functioning of the turbocharger centrifugal compressor at high boost pressures, and hence the measurement of the performance maps of both compressor and turbine. Automotive manufacturers use mainly numerical simulations for internal combustion engines simulations, hence the need of an accurate extrapolation model to get a complete turbine performance map. These complete maps are then used for internal combustion engines calibration. Automotive manufacturers use commercial softwares to extrapolate the turbine narrow performance maps, both mass flow characteristics and the efficiency curve.
Technical Paper

Compressor Efficiency Extrapolation for 0D-1D Engine Simulations

2016-04-05
2016-01-0554
0D-1D codes allow researchers to obtain a prediction of the behavior of internal combustion engines with little computational effort. One of the submodels of such codes is devoted to the centrifugal compressor. This model is often based on the compressor performance maps, therefore requiring the extrapolation of the maps so that all possible operating conditions are covered. Particularly, a suitable extrapolation of isentropic efficiency map is sought. This work first examines different available methods for compressor efficiency extrapolation into off-design conditions. No method is found to provide satisfactory results at all extrapolated regions: low and high compressor speeds and low compression ratio at measured speeds. Hence, a new method is proposed and its accuracy is assessed with the aid of compressor off-design measurements.
Technical Paper

Spray Modelling for GDI Application: Two Different Approach

2016-02-01
2016-28-0007
This state of art investigation report explains the limitations of Rosin-Rammler approach in comparison with breakup approach. The injection phenomenon of a commercial injector is simulated at various injection pressures, with Heptane (C7H16) in a spray bomb. It is observed that Breakup approach is better suitable in terms of correlation for spray modelling than the Rosin-Rammler approach when the injection pressures are 10 and 20 MPa, the SMD correlation shows also a good correlation at these pressures. At 4 MPa, correlation is a bit poorer, which is coherent as break-up models are best suited to high injection pressures configurations. Also, in each approach the primary dependent parameters are fine-tuned and their effects are discussed.
Journal Article

Investigation on Multiple Injection Strategies for Gasoline PPC Operation in a Newly Designed 2-Stroke HSDI Compression Ignition Engine

2015-04-14
2015-01-0830
Partially Premixed Combustion (PPC) of fuels in the gasoline octane range has proven its potential to achieve simultaneous reduction in soot and NOX emissions, combined with high indicated efficiencies; while still retaining proper control over combustion phasing with the injection event, contrary to fully premixed strategies. However, gasoline fuels with high octane number as the commonly available for the public provide a challenge to ensure reliable ignition especially in the low load range, while fuel blends with lower octane numbers present problems for extending the ignition delay in the high load range and avoid the onset of knocking-like combustion. Thus, choosing an appropriate fuel and injection strategy is critical to solve these issues, assuring successful PPC operation in the full engine map.
Journal Article

Development and Validation of a New Zero-Dimensional Semi-Physical NOx Emission Model for a D.I. Diesel Engine Using Simulated Combustion Process

2015-04-14
2015-01-1746
Reducing NOx tailpipe emissions is one of the major challenges when developing automotive Diesel engines which must simultaneously face stricter emission norms and reduce their fuel consumption/CO2 emission. In fact, the engine control system has to manage at the same time the multiple advanced combustion technologies such as high EGR rates, new injection strategies, complex after-treatment devices and sophisticated turbocharging systems implemented in recent diesel engines. In order to limit both the cost and duration of engine control system development, a virtual engine simulator has been developed in the last few years. The platform of this simulator is based on a 0D/1D approach, chosen for its low computational time. The existing simulation tools lead to satisfactory results concerning the combustion phase as well as the air supply system. In this context, the current paper describes the development of a new NOx emission model which is coupled with the combustion model.
Journal Article

Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car

2013-04-08
2013-01-1719
The target of substantial CO₂ reductions in the spirit of the Kyoto Protocol as well as higher engine efficiency requirements has increased research efforts into hybridization of passenger cars. In the frame of this hybridization, there is a real need to develop small Internal Combustion Engines (ICE) with high power density. The two-stroke cycle can be a solution to reach these goals, allowing reductions of engine displacement, size and weight while maintaining good NVH, power and consumption levels. Reducing the number of cylinders, could also help reduce engine cost. Taking advantage of a strong interaction between the design office, 0D system simulations and 3D CFD computations, a specific methodology was set up in order to define a first optimized version of a two-stroke uniflow diesel engine. The main geometrical specifications (displacement, architecture) were chosen at the beginning of the study based on a bibliographic pre-study and the power target in terms.
Technical Paper

The Potential of Highly Premixed Combustion for Pollutant Control in an Automotive Two-Stroke HSDI Diesel Engine

2012-04-16
2012-01-1104
An innovative alternative to overcome the load limits of the early injection highly premixed combustion concept consists of taking advantage of the intrinsic characteristics of two-stroke engines, since they can attain the full load torque of a four-stroke engine as the addition of two medium load cycles, where the implementation of this combustion concept could be promising. In this frame, the main objective of this investigation focuses on evaluating the potential of the early injection HPC concept using a conventional diesel fuel combined with a two-stroke poppet valves engine architecture for pollutant control, while keeping a competitive engine efficiency. On a first stage, the HPC concept was implemented at low engine load, where the concept is expected to provide the best results, by advancing the start of injection towards the compression stroke and it was confirmed how it is possible to reduce NOX and soot emissions, but increasing HC and CO emissions.
Technical Paper

Study of Intake Ports Design for Ultra Low Cost (ULC) Gasoline Engine Using STAR-CD

2012-04-16
2012-01-0407
In this study, different designs of intake ports for two-stroke Ultra Low Cost Gasoline Direct Injection Engine (ULC-GE) has been analyzed to conclude on best design using steady state analysis in STAR-CD. The four types of intake ports design with two cylinders, each having fourteen ports, have been studied. The basic differences in designs are horizontal inlet entry (perpendicular to cylinder axis) and vertical inlet entry (in-line with cylinder axis) having rotation of flow clockwise and anticlockwise. Each type is further differentiated in eight cases with varying distances between axis of two-cylinder as 85mm, 88mm, 91 mm, 94 mm, 97 mm, 100 mm, 105 mm and 112 mm. These designs are analyzed for four different pressure drops as 10 mbar, 50 mbar, 100 mbar and 150 mbar.
Journal Article

Validation and Application of a New 0D Flame/Wall Interaction Sub Model for SI Engines

2011-08-30
2011-01-1893
To improve the prediction of the combustion processes in spark ignition engines, a 0D flame/wall interaction submodel has been developed. A two-zones combustion model is implemented and the designed submodel for the flame/wall interaction is included. The flame/wall interaction phenomenon is conceived as a dimensionless function multiplying the burning rate equation. The submodel considers the cylinder shape and the flame surface that spreads inside the combustion chamber. The designed function represents the influence of the cylinder walls while the flame surface propagates across the cylinder. To determine the validity of the combustion model and the flame/wall interaction submodel, the system was tested using the available measurements on a 2 liter SI engine. The model was validated by comparing simulated cylinder pressure and energy release rate with measurements. A good agreement between the implemented model and the measurements was obtained.
Technical Paper

Fatigue Analysis of Conrod Bearing

2011-04-12
2011-01-0197
For many years, bearing suppliers have been using the specific pressure to evaluate the fatigue risk of conrod bearings. However, modern engines have made the bearing more sensitive to various phenomena such as the thermal expansion or the elasticity of the conrod housing. These effects modify the stresses in the bearing layers and consequently fatigue risk. In this paper, we propose a new way to determine the bearing fatigue resistance. To achieve that, we analyze the elastic and plastic behavior of the bearing along the engine life. We detail and provide the analytical relationships which determine stresses in the overlay and in the substrate of the bearing in order to analyze their fatigue resistance. Various physical loads are taken into account such as the thermal load, the hydrodynamic pressure field, the fitting load, the free spread load. A good knowledge of the relationships between those physical phenomena helps to understand the mechanical behavior of the bearing.
Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Technical Paper

A Physical 0D Combustion Model Using Tabulated Chemistry with Presumed Probability Density Function Approach for Multi-Injection Diesel Engines

2010-05-05
2010-01-1493
This paper presents a new 0D phenomenological approach to predict the combustion process in diesel engines operated under various running conditions. The aim of this work is to develop a physical approach in order to improve the prediction of in-cylinder pressure and heat release. The main contribution of this study is the modeling of the premixed part of the diesel combustion with a further extension of the model for multi-injection strategies. In phenomenological diesel combustion models, the premixed combustion phase is usually modeled by the propagation of a turbulent flame front. However, experimental studies have shown that this phase of diesel combustion is actually a rapid combustion of part of the fuel injected and mixed with the surrounding gas. This mixture burns quasi instantaneously when favorable thermodynamic conditions are locally reached. A chemical process then controls this combustion.
Journal Article

Establishing New Correlations Between In-Cylinder Charge Motion and Combustion Process in Gasoline Engines Through a Numerical DOE

2010-04-12
2010-01-0349
This paper presents an innovative methodology and the corresponding results of a study whose goal is to identify the main links between in-cylinder charge motion and the development of combustion without taking into consideration how to create this charge motion (shape of the intake ducts, valve timing, etc …). During this study a specific methodology was developed and used. It is based on the calculation of a “3D numerical test bench” matrix planned following the Design Of Experiments method. Many aerodynamic configurations obtained by combining the three main aerodynamic motions with several different intensities (tumble, cross-tumble or swirl) at the intake valve closing were calculated.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Technical Paper

Energy Management of a High Efficiency Hybrid Electric Automatic Transmission

2010-04-12
2010-01-1311
The energy management of a hybrid vehicle defines the vehicle power flow that minimizes fuel consumption and exhaust emissions. In a combined hybrid the complex architecture requires a multi-input control from the energy management. A classic optimal control obtained with dynamic programming shows that thanks to the high efficiency hybrid electric variable transmission, energy losses come mainly from the internal combustion engine. This paper therefore proposes a sub-optimal control based on the maximization of the engine efficiency that avoids multi-input control. This strategy achieves two aims: enhanced performances in terms of fuel economy and a reduction of computational time.
X