Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Ultra-Lean Pre-Chamber Gasoline Engine for Future Hybrid Powertrains

2019-09-09
2019-24-0104
Lean burn gasoline spark-ignition engines can support the reduction of CO2 emissions for future hybrid passenger cars. Very high efficiencies and very low NOx raw emissions can be achieved, if relative air/fuel ratios λ of 2 and above can be reached. The biggest challenge here is to assure a reliable ignition process and to enhance the fuel oxidation in order to achieve a short burn duration and a good combustion stability. This article aims at introducing an innovative combustion system fully optimized for ultra-lean operation and very high efficiency. Thereto, a new cylinder head concept has been realized with high peak firing pressure capability and with a low surface-to-volume ratio at high compression ratios. 1D and 3D simulations have been performed to optimize the compression ratio, charge motion and intake valve lift. Numerical calculations also supported the development of the ignition system.
Technical Paper

An Innovative On-Line Measurement Method for Studying the Impact of Lubricant Formulations on Poisoning and Clogging of After-Treatment Devices

2005-05-11
2005-01-2178
The lifetime of the new technologies of after-treatment devices is influenced by the composition of engine oil, making it necessary to study the compatibility of lubricants with these devices. These compatibility tests usually evaluate parameters such as the long-term performance of after-treatment systems, the quantity and nature of accumulated residues due to the lubricant used, back-pressure increase, etc. This paper presents a novel, non-destructive radionuclide technique based on labeling the different elements in the engine oil (e.g. zinc and calcium), that provides additional information to after-treatment system compatibility tests: on-line measurement in the after-treatment device of the accumulation of elements from oil additives, and visualization of their distribution inside the device (inlet/outlet). Most of the work presented here focuses on the accumulation of zinc and calcium from the lubricant in a Diesel Particulate Filter (DPF).
Technical Paper

Convective Heat Transfers in the Combustion Chamber of an Internal Combustion Engine Influence of In-Cylinder Aerodynamics

2005-05-10
2005-01-2028
Previous studies of in-cylinder heat transfers give numerous approaches of heat losses modelling principally compression and expansion strokes. These simulation methods are discussed showing that their accuracy during the intake stroke is neglected. Since most of the modern engines use strong structured air motion during the intake and compression strokes to both reduce consumption and reach different emissions levels targets, one may focus on in-cylinder aerodynamics and convective heat transfer coupling. The experimental velocity data acquired allow us to get an in-depth understanding of the spatial and temporal gradients of measured heat transfers in the cylinder of an internal combustion engine. Two different experimental methods have been used to investigate the in-cylinder air motion. First, near wall flow has been studied using two component local time-resolved Laser Doppler Anemometry (LDA).
Technical Paper

Prediction of the Efficiency of an Automotive Oil Separator: Comparison of Numerical Simulations with Experiments

2004-10-25
2004-01-3019
RENAULT has developed a numerical method for predicting the efficiency of two types of oil separator. Numerical simulation is performed with the CFD package FLUENT6. Blow-by flow is considered as an aerosol mixture and is simulated as a continuous phase (air flow) carrying a discrete phase (oil droplets). The separator is meshed using a uniform 1mm tetrahedral mesh. The inlet volume flow is assumed steady. A standard k-epsilon model is used for flow calculation. Then droplets are introduced and their trajectories are computed. The wall boundary condition is straightforward: a particle touching a wall is assumed trapped and removed from the flow. The experimental set-up for efficiency measurement includes an oil generator which produces an air/oil aerosol mixture with a user-fixed volume flow, oil mass-flow and oil droplets diameter distribution. The generator is connected to a prototype oil separator. It is equipped with length and position-adjustable plates.
Technical Paper

New Barrier Test and Assessment Protocol to Control Compatibility

2004-03-08
2004-01-1171
After a lot of researches in the field of compatibility through testing and accident analysis, the current knowledge allows us to propose a new test protocol able to control the two issues of compatibility: partner and self protection. In other words, the procedure would be able to assess the most relevant parameters: structural interaction (geometry / stiffness) and compartment strength (stiffness). The most effective way to meet this target is to control both of them at the same time, thus avoiding many test regulations. The new final protocol will be a mix of two very well known test configurations: current frontal regulation in Europe (ECE 94) to assess compartment strength and structural integrity through vehicle and dummy criteria Progressive Deformable Barrier test (PDB) to assess and control force distribution through barrier deformation.
Technical Paper

Development of a Direct Injection Spark Ignition Engine Test for Injector Fouling

2003-05-19
2003-01-2006
Direct Injection Spark Ignition (DISI) engines are known to be sensitive to injector fouling. To evaluate the effectiveness of detergent additives and the influence of fuel parameters on injector fouling, a new DISI engine test has been developed, using a 2.0 l stoichiometric homogeneous DI engine on a test bench. Severe engine running conditions have been found to lead to a high amount of deposits on the injector nozzle over a short period of time (“one day” procedure). Injector fouling is measured using a fuel flow measurement procedure representative of injector operating conditions (opening time and pressure). This procedure has proved to be reliable and repeatable with different gasoline fuels and additives being evaluated. The influence of the base fuel and the effect of the composition and the dosages levels of detergent additives (keep-clean and clean-up properties) are demonstrated with the test method.
Technical Paper

Compatibility Assessment Proposal Close From Real Life Accident

2003-05-19
2003-06-0014
Accident studies show that incompatibility has become the main cause of fatal injury in car-to-car accidents. There is a general agreement today that improving compatibility is one of the most effective ways to reduce the number of road accident victims. Therefore, structural car design must take into account other road users without decreasing self-protection level supplied by all new passenger cars. In addition to these safety considerations, the front unit structural design has to account for an increasing number of constraints: improvement of real-world performance in safety, fulfill current and future regulations like "CAFÉ" or pedestrian, reducing utilization costs and so on. Furthermore, European fleet is changing in mass and in size, as the world's ones, and new fashion vehicles appear different than the previous one.
Technical Paper

Dilution Interest on Turbocharged SI Engine Combustion

2003-03-03
2003-01-0629
This paper presents a prospective combustion study about dilution effects on turbocharged SI engine at full load. It proposes a comparative analysis between lean burn and cooled exhaust gas recirculation (EGR) operation as knock improvement artifice in substitute of enrichment. The study was led on a four cylinder 2L engine on stationary test bench. A specific EGR circuit was designed in order to achieve high control of the temperature and mass flow of the recirculated gas. Thanks to instantaneous pressure cylinder transducers, a combustion analysis was carried out using an home-made code. 1-D simulations (WAVE code) were used to complete the analysis on volumetric efficiency and turbocharger behaviour. A real advantage of cooled EGR was observed in the study compared to lean burn or enrichment in terms of performance, heat exchange and specific fuel consumption.
Technical Paper

Compatibility: Causes, Constraints, Improvements and Evaluation Proposal

2002-03-04
2002-01-1023
Accident studies conducted during the last twenty-five years clearly show that car to car head-on collision is a major impact configuration to take into account in order to improve safety on the roads. With new self protection ratings all cars offer equivalent behaviour against a fixed obstacle. So, in the future, the main progress will have to be made in car to car compatibility. Recent studies have shown the feasibility of designing compatible cars for both structure behaviour and occupant protection. However, some requirements on front unit design could make this aim more difficult to achieve. We suggest developping a more comprehensive approach in order to better take into account all the constraints.
Technical Paper

Structural front unit global approach

2001-06-04
2001-06-0232
The structural design of current vehicle front units has to account for an increasing number of constraints: improvement of real-world performance in safety for occupants and others road users, perform in the various ratings and meet future regulations. Therefore the structural car design is the result of a compromise between pedestrian protection, car-to-car compatibility and self- protection. In addition to these safety considerations, reparability constraints are becoming more and more demanding and intrusive toward the other safety requirements. The need to reduce emissions through fuel consumption control requires a reduction of the overall body weight which leads usually to more difficulties to achieve a correct structural behavior. Some of these constraints lead to solutions which are in opposition and in general to unsatisfactory compromises. It is suggested to develop a more comprehensive approach in order to better take into account both safety requirements and reparability.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

A Laboratory Study of NOX Reduction During the Rich Operating Period Over a NOX Storage Catalyst

1999-10-25
1999-01-3502
The behaviour of a NOx storage catalyst in powdered form and containing a storage component based on alkaline metal was investigated under rich conditions. Experiments were conducted in a fixed-bed flow reactor with the space velocity set at 45,000 h-1. From these experiments it was possible to extract the fractional NOx reduction and the efficiency of use of the reductant. With 0.9% CO as a reductant at 350°C, complete utilisation of CO was achieved up to 70% NOx conversion as treatment time was increased. To obtain 90% NOx conversion required longer times, and 23% of the CO did not participate in the reduction of NOX. A reductant balance shows that about 40% of the CO added is used to reduce the catalyst surface when the flow is switched from lean to rich. The ranking of efficiencies of different reductant gases at 350°C gave the following sequence: 0.9% H2 ≈ 0.9% CO > 1285 ppm toluene > 3000 ppm propene ≈ 1125 ppm i-octane > 3000 ppm propane.
Technical Paper

Potential of CFD in Analysis Under-Bonnet Airflow Phenomena

1999-03-01
1999-01-0802
Increasing design emphasis on factors such as styling, fuel reduction and soundproofing raises a number of additional problems concerning under-bonnet aerodynamics and heat exchange. Because experimental work on successive prototypes entails heavy penalties in terms of development lead-time, it is becoming more and more important to integrate simulation from the pilot study stage, as a way to minimize the number of prototypes. Fortunately, early integration of under-bonnet air-flow modelling is becoming an increasingly viable proposition, thanks to the spectacular increase in computer processing power, which stimulates the development of more efficient meshing software and facilitates the generalized implementation of CAD techniques throughout the design processes. Modelling thus emerges as a new investigatory method that enhances the design office's capabilities by enabling it to adopt a sharper design focus right from the pilot project stage.
Technical Paper

Assessment of Engine Cooling Performance by Measurement of Cooling Airflow Drag in Aerodynamic Wind Tunnels

1998-02-23
980428
In this paper we discuss a method for determining heat transfer behaviour during tests in aerodynamic wind tunnels. The method involves computing the heat power evacuated by the heat exchanger as a function of the cooling airflow drag. Using dimensional analysis techniques, we define a Thermal Efficiency Coefficient (TEC). Systematic tests on three geometrically different types of vehicles show that there is a universal law governing the variation in TEC with cooling airflow drag. By associating the curve for this universal law with the characteristic curve for the heat exchanger alone, we can compute a TEC value for a measured cooling airflow drag value, and thus determine the vehicle's engine cooling performance during aerodynamic tests.
Technical Paper

Hybrid Substructuring for Vibro-Acoustical Optimisation: Application to suspension - Car Body Interaction

1997-05-20
971944
For the prediction of the vibro-acoustical vehicle behaviour up to higher frequency ranges, modal approaches are not very applicable. Hybrid frequency response function based substructuring methods are therefore proposed, in which the high modal density components are represented by experimental data, and in which the lower density components are represented by finite element models. The frequency response function synthesis of the lower denstty component can be based on modal synthesis. In this paper, an application of coupling a rear twist beam suspension with a car body is discussed. In this case the vibro-acoustical behaviour of the car body is the high density component, the low density component is the suspension finite element model. Aspects of accuracy, related to truncation, influence of rotational degrees of freedom, symmetry of the experimental matrix, and prestraining of the suspension springs are discussed.
Technical Paper

Research Results on Processes and Catalyst Materials for Lean NOx Conversion

1996-10-01
962041
In a joint research project between industrial companies and a number of research institutes, nitrogen oxide conversion in oxygen containing exhaust gas has been investigated according to the following procedure Basic investigations of elementary steps of the chemical reaction Production and prescreening of different catalytic material on laboratory scale Application oriented screening of industrial catalyst material Catalyst testing on a lean bum gasoline engine, passenger car diesel engines (swirl chamber and DI) and on a DI truck engine Although a number of solid body structures show nitrogen oxide reduction by hydrocarbons, only noble metal containing catalysts and transition metal exchanged zeolites gave catalytic efficiencies of industrial relevance. A maximum of 25 % NOx reduction was found in the European driving cycle for passenger cars, about 40 % for truck engines in the respective European test.
Technical Paper

Comparison of the Effects of Intake-Generated Swirl and Tumble on Turbulence Characteristics in a 4-Valve Engine

1995-10-01
952457
An experimental investigation is carried out on the effect of Swirl and Tumble on turbulence and combustion characteristics in four-valve spark ignition engines. This study is conducted on an optically accessed single cylinder research engine. The in-cylinder motion is varied by means of flow-control baffle located between the intake manifold and the cylinder head. Several baffle sizes and shapes have been designed to induce various in-cylinder flow fields. The equivalent angular speed of the tumble and swirl vortices, occurring inside the cylinder, are determined from Laser Doppler Velocimetry. Comparisons with measurements from a conventional steady flow rig which measures air motion speed with a paddle wheel anemometer are presented and show a good correlation between the two measurement techniques.
Technical Paper

Sirex, Vehicle Electric Network Simulation Software

1994-03-01
940132
A large increase in the power on board vehicles is expected in the years to come. More complex electric networks will then be required to provide adequate reliability and minimal petrol consumption to reduce pollutant emissions from thermal engine powered vehicles. The scope of this paper is to introduce Sirex, a modeling software package which was developed to simulate current and future architectures, multi-voltage, high voltage networks, etc. We describe hereafter the main characteristics of Sirex, its models, the software architecture… and we give some examples of simulation results.
X