Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Inertia Measurements of Large Military Vehicles

2001-03-05
2001-01-0792
This paper describes the design and operation of a facility for measuring vehicle center-of-gravity height; roll, pitch, and yaw moments of inertia; and roll/yaw cross product of inertia for a broad range of test specimens. The facility is configurable such that it is capable of measuring these properties for light, single axle trailers; long, heavy vehicles; and tank turrets. The design was driven by the need for accurate, repeatable measurement results and the desire to have a single facility capable of making measurements on a broad range of vehicle sizes.
Technical Paper

Effects of Loading on Vehicle Handling

1998-02-23
980228
This paper explores the effects of changes in vehicle loading on vehicle inertial properties (center-of-gravity location and moments of inertia values) and handling responses. The motivation for the work is to gain better understanding of the importance vehicle loading has in regard to vehicle safety. A computer simulation is used to predict the understeer changes for three different vehicles under three loading conditions. An extension of this loading study includes the effects of moving occupants, which are modeled for inclusion in the simulation. A two-mass model for occupants/cargo, with lateral translational and rotational degrees of freedom, has been developed and is included in the full vehicle model. Using the simulation, the effects that moving occupants have on vehicle dynamics are studied.
Technical Paper

Developments in Vehicle Center of Gravity and Inertial Parameter Estimation and Measurement

1995-02-01
950356
For some vehicle dynamics applications, an estimate of a vehicle's center of gravity (cg) height and mass moments of inertia can suffice. For other applications, such as vehicle models and simulations used for vehicle development, these values should be as accurate as possible. This paper presents several topics related to inertial parameter estimation and measurement. The first is a simple but reliable method of estimating vehicle mass moment of inertia values from data such as the center of gravity height, roof height, track width, and other easily measurable values of any light road vehicle. The second is an error analysis showing the effect, during a simple static cg height test, of vehicle motion (relative to the support system) on the vehicle's calculated cg height. A method of accounting for this motion is presented. Similarly, the effects of vehicle motion are analyzed for subsequent mass moment of inertia tests.
Technical Paper

Response of Brake Light Filaments to Impact

1988-02-01
880234
Taillight lamp filaments provide valuable information on their illumination status during a collision. This information is contained in the shape of filament deformation, extent and nature of filament fracture, and filament oxidation. The degree of deformation of these filaments, a quantity which may be useful in determining velocities prior to impact, has been documented for headlights but has not been closely examined for taillights. In this paper, a study of the quantification of automobile taillight filament response when subjected to low speed impacts is presented. These studies include two different brands, five velocities up to approximately 19 miles per hour, three filament orientations, and two different deceleration pulses. Recommendations are given for further study in order to provide sufficient data for practical application and use in accident reconstruction.
X