Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Machine Learning Approach to Predict Bead Height and Width in Wire Arc Additive Manufacturing Sample

2023-11-10
2023-28-0145
Wire Arc Additive Manufacturing (WAAM) is a type of 3D printing technology which build up layer by layer material using welding to create a finished product. To this extent, we have developed the machine learning approach using the KNN regression model to predict the bead’s height and width of the E71T1 mild steel sample by wire arc additive manufacturing (WAAM). We have conducted a systematic experimental study by varying the process parameters such as Voltage (V), Current (A) and wire feed rate (f), and the corresponding output value: height, and width of the bead are recorded. A total of 195 experiments were conducted, and the corresponding output values were noted. From the experimental data, 80% data was used to train the model, and 20% was used for testing the model. Further, the model’s accuracy was predicted using an independent set of test samples.
Technical Paper

Effect of ZrO2 Nanoparticles Loading on the Tribo-Mechanical Behavior of Magnesium Alloy Nanocomposites

2023-11-10
2023-28-0130
Magnesium alloy nanocomposite prepared with hard ceramic particles via conventional technique is a promising future material for automotive applications due to its unique characteristics like low density, high strength, castability, and good wear resistance. The present study is to enhance the tribo-mechanical properties of alumina nanoparticle (10wt %) reinforced magnesium alloy (Mg/Al) composite by incorporating 1wt%, 3wt%, and 5wt% zirconium dioxide (ZrO2) nanoparticles through stir casting method. The tensile strength, impact toughness, hardness, and wear rate of developed composites were compared with (10wt %) alumina nanoparticles reinforced magnesium alloy composite. The nanocomposite containing 3wt% ZrO2 shows maximum impact strength of 22.8 J/mm2. The maximum tensile strength (88.9MPa), hardness (124.5BHN), and wear resistance (9.802mm3/m at 20N) are obtained for 5wt% ZrO2 magnesium alloy nanocomposite.
Technical Paper

Load Bearing Analysis of Titanium Surface Ground with CBN Wheel and 6% CNT-CBN Wheel

2023-11-10
2023-28-0080
Surface integrity is an important factor in the effective functioning of a component. For this reason, the surface finish is given as meticulous attention as possible, while quality checks are rigorous. The process parameters affecting surface roughness are carefully controlled, with many preventive measures enforced to avoid deviation from the tolerance limits. Surface finish is an important part of the load-bearing properties of a surface as the asperities on its surface first come into contact with the mating surfaces. On contact, the asperities are flattened, and there is debris formation. These asperities are critical in joint replacements where Titanium is a material of choice, as the debris can react with bones and even cause necrosis of bone. The surface finish of Titanium is important as the asperities can function as points of stress when subjected to loads. Stress concentrators are detrimental to a material’s life; therefore, a part’s surface finish becomes critical.
Technical Paper

Development of Silicon Carbide Dispersed Steel Using Wire Arc Additive Manufacturing Process

2023-11-10
2023-28-0126
High-strength steel has several industrial applications such as automobile, tool and die, construction industries etc. However, it is challenging to achieve it. Various strengthening mechanisms, such as dispersion strengthening, alloying, grain boundary strengthening etc., plays a vital role in deciding the properties of the steel. At the industrial level, high-strength steel is produced by adding alloying elements such as Tungsten, Chromium, and Molybdenum in the steel matrix, increasing the high-strength steel cost. On the other hand, Wire Arc Additive manufacturing (WAAM) can produce dispersion strengthening in steel to mimic the properties of a high-strength steel matrix. The WAAM is a relatively low-cost additive manufacturing technology which uses a welding process to build up layers of material to fabricate the finished product. We have dispersed hard silicon carbide (SiC) particles in the mild steel matrix using the WAAM process in this work.
Technical Paper

A Combined Automotive Exhaust Heat Recovery Technique Using Phase Change Material and Jet Impingement Heat Transfer with Wall Protrusions and Baffle

2022-12-23
2022-28-0512
Automotives play a very important role in day-to-day human lives. The exhaust gas emitted from automotive vehicles of current technologies is one of the major contributions to global temperature increment. It is important to develop a system that can conserve energy and incorporate it into current vehicles which are in use. Phase change materials (PCM) are well known for energy storage applications because of their crucial thermophysical property known as latent heat of fusion. The gas from the exhaust pipe of automobiles can be considered a turbulent jet. With this assumption in this study, a system is proposed by combining jet impingement and phase change material at the exhaust pipe of automobiles to recover the thermal energy which is being let out into the atmosphere as waste. Liquid Gallium is chosen as a phase change material for this study because of its high thermal conductivity nature compared to other hydrocarbon-based phase change materials.
Technical Paper

Optimization and Experimental Analysis of AZ91E Hybrid Nanocomposite by Drilling Operation

2020-09-25
2020-28-0509
The usage of AZ91E series magnesium alloy material increases in the field of automobile, aerospace and structural applications because of its enhanced mechanical properties, light weight and good machinability characteristics. The present investigation is to optimize the drilling process parameters of magnesium alloy (AZ91E) hybrid nano composite consisting of chopped basalt fiber (9wt%) and SiCp (7.5wt%) fabricated by vacuum stirring technique. AZ91E hybrid nano composite is drilled by M-Tab vertical machining centre equipped with CNC under dry state (without coolant). The dry state drilling operation was performed by HSS tool with varied input parameters like drill diameter (6mm, 8mm, 10mm and 12mm), spindle speed (200rpm, 300rpm 400rpm 500rpm), feed rate (5mm/min, 10mm/min, 15 mm/min, 20 mm/min) with constant depth of cut (15mm).
Technical Paper

Investigation of Setting Input Process Parameters for Getting Better Product Quality in Machining of AM60 Magnesium Alloy - TOPSIS and ANOVA Approach

2019-10-11
2019-28-0136
This investigation shows the improvement of Machining parameters on AM-60 Mg alloy made with the help of Gravity Die Casting and with reactions upheld symmetrical cluster with “Technique for Order Preference by Similarity to Ideal Solution” (TOPSIS). Which Focuses on the streamlining of Machining parameters utilizing the system to get least surface Roughness (Ra), Minimum Tool Wear, minimum Cutting Time, Power Requirement and Torque and Maximize MRR. A good amount of Machining tests was directed in view of the L9 Orthogonal array on CNC machine. The trials were performed on AM60 utilizing cutting device of grade-ISO 460.1-1140-034A0-XM GC3 of 12,16 and 25 mm width with cutting point of 140 degrees, all throughout the test work under various cutting conditions. TOPSIS and ANOVA were utilized to work out the major vital parameters like Cutting speed, feed rate, Depth of Cut and Tool Diameter which influence the Response. The normal qualities and estimated esteems are genuinely close.
Technical Paper

Tensile and Fatigue Behavior of Shallow Cryogenically Treated EN19 Alloy Steel

2019-10-11
2019-28-0100
Tensile and axial fatigue tests were conducted on shallow cryogenically treated EN19 medium carbon alloy steel to investigate its mechanical behavior. The test samples were conventionally heat treated then oil quenched at room temperature. Followed by the samples were kept for shallow cryogenic treatment to -80°C for 8 hours using liquid nitrogen. Then the samples were tempered in a muffle furnace to relieve the induced residual stresses. Tensile and axial fatigue test were carried out on both treated and non-treated samples to measure its tensile strength and fatigue behavior respectively. Microscopic examination also had done to compare the effect of shallow cryogenic treatment on its microstructure. The results exposed that there is an increase in the tensile strength and reduction in fatigue life of shallow cryogenically treated samples over base metal and improved wear resistance.
Technical Paper

Multi Characteristics Optimization of Treated Drill Tool in Drilling Operation Key Process Parameter Using TOPSIS and ANOVA Technique

2019-10-11
2019-28-0055
To survive in the present global competitive world, the manufacturing sectors have been making use of various tools to achieve the high quality products at a comparatively cheaper price. Appropriate cutting set up must be used to further better the machinability of a work piece material. A longer life of the tools and equipment’s are important factors in any industry. Since the inception of the machine tool industry, cutting tool life and tool wear remain a subject of deep interest to study its failure and improvement. The present study finds out the optimum cutting results in drilling of AM60 magnesium alloy using different cryogenically treated cutting inserts. The Utility concept coupled with Taguchi with Multi response approach (TOPSIS) was employed. According to Analysis of variance (ANOVA) results, the feed was the major dominating factor followed by the cutting speed.
Technical Paper

Development and Influence of Setting Process Variables in Single Point Incremental Sheet Metal Forming of AA 8011 Using Complex Proportional Assessment and ANOVA

2019-10-11
2019-28-0064
Single point Incremental forming (SPIF) is a metal forming process that has achieved impeccable quality since the early 1990s. ISF is a very limited twisting process in which an improved device that must be used after a particular direction travels on a metal sheet to form the desired shape. Process parameters such as axial feed (mm), feed (mm / min), tool diameter (mm) and depth (mm) at the interface between samples during SPIF greatly affect the quality of the cone. Maximum thinning (mm), cone height (mm), wall angle (mm), formation time (minutes), etc. The purpose of this study was to study these parameters by improving the cone mass formed by VMC. For a detailed study of these parameters, experiments were performed using the orthogonal array L9. Output parameters such as mechanical quality effects were analysed using COPRAS (Complex Proportional Assessment of alternatives) and ANOVA.
Technical Paper

Corrosion and Corrosive Wear of Steel for Automotive Exhaust Application

2019-10-11
2019-28-0178
In the current scenario, durable exhaust system design, development and manufacturing are mandatory for the vehicle to be competitive and challenging in the automotive market. Material selection for the exhaust system plays a major role due to the increased warranty requirements and regulatory compliances. The materials used in the automotive exhaust application are cast iron, stainless steel, mild steel. The materials of the exhaust systems should be heat resistant, wear and corrosion resistant. Stainless steel is the most commonly used material in the automotive exhaust system. Due to increasing cost of nickel and some other alloying elements, there is a need to replace the stainless steel with EN 8 steel. Recent trends are towards light weight concepts, cost reduction and better performance. In order to reduce the cost and to achieve better wear and corrosion resistance, the surface of the EN 8 steel is modified with coatings.
Technical Paper

Informatics Based Design of Bio-Lubricant with Nano Friction Modifiers and Evaluation of Its Tribological Properties

2018-07-09
2018-28-0100
Statistical and computational intelligence techniques were employed for informatics based design of nano friction modifiers added bio-lubricant. Systematic data were generated through laboratory experiments, using design of experiment, to study the effect of addition of multi-wall carbon nanotubes as friction modifiers in castor oil on frictional properties. The experimental data were used to develop data driven models using statistical techniques, artificial neural network and fuzzy inference systems. The simulation studies which were based on the model predictions were used to design the nano-lubricant with multi-walled carbon nanotubes as the friction modifiers. The optimum combination of nanotube concentration and load, found from the model predictions, were experimentally validated.
Technical Paper

Sliding Wear and Friction Studies of Disc/ Pad Materials

2018-04-03
2018-01-0840
Brake disc provides friction force with minimum weight loss on application of brake. The pad material only experiences more wear and friction. Disc and pad materials are selected to give a stable and high coefficient of friction (0.25-0.40). COF is directly proportional to braking force generated and inversely proportional to the stopping distance. The aim of the study is to identify a new material for replacement of pad material in practice. In this study, wear, hardness and friction properties of E glass fiber with epoxy resin and cashew friction dust composite are studied and compared with brake pad material in practice. The hardness was measured using shore hardness tester. The wear and friction was measured using the pin on disc wear testing machine. The pad material was made as pin with cast iron as the disc material for wear studies. The wear studies were conducted for various load conditions and sliding velocities.
X