Refine Your Search

Topic

Author

Search Results

Journal Article

Development and Validation of an EHN Mechanism for Fundamental and Applied Chemistry Studies

2022-03-29
2022-01-0455
Autoignition enhancing additives have been used for years to enhance the ignition quality of diesel fuel, with 2-ethylhexyl nitrate (EHN) being the most common additive. EHN also enhances the autoignition reactivity of gasoline, which has advantages for some low-temperature combustion techniques, such as Sandia’s Low-Temperature Gasoline Combustion (LTGC) with Additive-Mixing Fuel Injection (AMFI). LTGC-AMFI is a new high-efficiency and low-emissions engine combustion process based on supplying a small, variable amount of EHN into the fuel for better engine operation and control. However, the mechanism by which EHN interacts with the fuel remains unclear. In this work, a chemical-kinetic mechanism for EHN was developed and implemented in a detailed mechanism for gasoline fuels. The combined mechanism was validated against shock-tube experiments with EHN-doped n-heptane and HCCI engine data for EHN-doped regular E10 gasoline. Simulations showed a very good match with experiments.
Technical Paper

Machine Learning Techniques for Classification of Combustion Events under Homogeneous Charge Compression Ignition (HCCI) Conditions

2020-04-14
2020-01-1132
This research evaluates the capability of data-science models to classify the combustion events in Cooperative Fuel Research Engine (CFR) operated under Homogeneous Charge Compression Ignition (HCCI) conditions. A total of 10,395 experimental data from the CFR engine at the University of Michigan (UM), operated under different input conditions for 15 different fuel blends, were utilized for the study. The combustion events happening under HCCI conditions in the CFR engine are classified into four different modes depending on the combustion phasing and cyclic variability (COVimep). The classes are; no ignition/high COVimep, operable combustion, high MPRR, and early CA50. Two machine learning (ML) models, K-nearest neighbors (KNN) and Support Vector Machines (SVM), are compared for their classification capabilities of combustion events. Seven conditions are used as the input features for the ML models viz.
Technical Paper

Measurements and Correlations of Local Cylinder-Wall Heat-Flux Relative to Near-Wall Chemiluminescence across Multiple Combustion Modes

2020-04-14
2020-01-0802
Minimizing heat-transfer (HT) losses is important for both improving engine efficiency and increasing exhaust energy for turbocharging and exhaust aftertreatment management, but engine combustion system design to minimize these losses is hindered by significant uncertainties in prediction. Empirical HT correlations such as the popular Woschni model have been developed and various attempts at improving predictions have been proposed since the 1960s, but due to variations in facilities and techniques among various studies, comparison and assessment of modelling approaches among multiple combustion modes is not straightforward. In this work, simultaneous cylinder-wall temperature and OH* chemiluminescence high-speed video are all recorded in a single heavy-duty optical engine operated under multiple combustion modes. OH* chemiluminescence images provide additional insights for identifying the causes of near-wall heat flux changes.
Journal Article

Experimental Evaluation of a Custom Gasoline-Like Blend Designed to Simultaneously Improve ϕ-Sensitivity, RON and Octane Sensitivity

2020-04-14
2020-01-1136
ϕ-sensitivity is a fuel characteristic that has important benefits for the operation and control of low-temperature gasoline combustion (LTGC) engines. However, regular gasoline is not very ϕ-sensitive at low-pressure conditions, meaning that intake boosting (typically Pin ≥ 1.3 bar) is required to take advantage of this property. Thus, there is strong motivation to design a gasoline-like fuel that simultaneously improves ϕ-sensitivity, RON and octane sensitivity, to make an improved fuel suitable for both LTGC and modern SI engines. In a previous study [SAE 2019-01-0961], a 5-component regulation-compliant fuel blend (CB#1) was computationally designed; and simulations showed promising results when it was compared to a regular E10 gasoline (RD5-87). The current study experimentally evaluates CB#1 in the Sandia LTGC engine and compares the results with those of RD5-87. The RON and octane sensitivity were improved 1.3 and 3.6 units by CB#1, respectively.
Technical Paper

Refining Measurement Uncertainties in HCCI/LTGC Engine Experiments

2018-04-03
2018-01-1248
This study presents estimates for measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility. A previously presented framework for quantifying those uncertainties developed uncertainty estimates based on the transducers manufacturers’ published tolerances. The present work utilizes the framework with improved uncertainty estimates in order to more accurately represent the actual uncertainties of the data acquired in the HCCI/LTGC laboratory, which ultimately results in a reduction in the uncertainty from 30 to less than 1 kPa during the intake and exhaust strokes. Details of laboratory calibration techniques and commissioning runs are used to constrain the sensitivities of the transducers relative to manufacturer supplied values.
Technical Paper

Characteristic Time Analysis of SI Knock with Retarded Combustion Phasing in Boosted Engines

2017-03-28
2017-01-0667
This study investigates the use of a characteristic reaction time as a possible method to speed up automotive knock calculations. In an earlier study of HCCI combustion it was found that for ignition at TDC, the ignition delay time at TDC conditions was required to be approximately 10 crank angle degrees (CAD), regardless of engine speed. In this study the analysis has been applied to knock in SI engines over a wide range of engine operating conditions including boosted operation and retarded combustion phasing, typical of high load operation of turbocharged engines. Representative pressure curves were used as input to a detailed kinetics calculation for a gasoline surrogate fuel mechanism with 312 species. The same detailed mechanism was used to compile a data set with traditional constant volume ignition delays evaluated at the peak pressure conditions in the end gas assuming adiabatic compression.
Journal Article

Boosted Premixed-LTGC / HCCI Combustion of EHN-doped Gasoline for Engine Speeds Up to 2400 rpm

2016-10-17
2016-01-2295
Previous work has shown that conventional diesel ignition improvers, 2-ethylhexyl nitrate (EHN) and di-tert-butyl peroxide (DTBP), can be used to enhance the autoignition of a regular-grade E10 gasoline in a well premixed low-temperature gasoline combustion (LTGC) engine, hereafter termed an HCCI engine, at naturally aspirated and moderately boosted conditions (up to 180 kPa absolute) with a constant engine speed of 1200 rpm and a 14:1 compression ratio. In the current work the effect of EHN on boosted HCCI combustion is further investigated with a higher compression ratio (16:1) piston and over a range of engine speeds (up to 2400 rpm). The results show that the higher compression ratio and engine speeds can make the combustion of a regular-grade E10 gasoline somewhat less stable. The addition of EHN improves the combustion stability by allowing combustion phasing to be more advanced for the same ringing intensity.
Technical Paper

Influence of HCCI and SACI Combustion Modes on NH3 Generation and Subsequent Storage across a TWC-SCR System

2016-04-05
2016-01-0951
Advanced engine combustion strategies, such as HCCI and SACI, allow engines to achieve high levels of thermal efficiency with low levels of engine-out NOx emissions. To maximize gains in fuel efficiency, HCCI combustion is often run at lean operating conditions. However, lean engine operation prevents the conventional TWC after-treatment system from reaching legislated tailpipe emissions due to oxygen saturation. One potential solution for handling this challenge without the addition of costly NOx traps or on-board systems for urea injection is the passive TWC-SCR concept. This concept includes the integration of an SCR catalyst downstream of a TWC and the use of periods of rich or stoichiometric operation to generate NH3 over the TWC to be stored on the SCR catalyst until it is needed for NOx reduction during subsequent lean operation.
Technical Paper

Refinement and Validation of the Thermal Stratification Analysis: A post-processing methodology for determining temperature distributions in an experimental HCCI engine

2014-04-01
2014-01-1276
Refinements were made to a post-processing technique, termed the Thermal Stratification Analysis (TSA), that couples the mass fraction burned data to ignition timing predictions from the autoignition integral to calculate an apparent temperature distribution from an experimental HCCI data point. Specifically, the analysis is expanded to include all of the mass in the cylinder by fitting the unburned mass with an exponential function, characteristic of the wall-affected region. The analysis-derived temperature distributions are then validated in two ways. First, the output data from CFD simulations are processed with the Thermal Stratification Analysis and the calculated temperature distributions are compared to the known CFD distributions.
Journal Article

Bio-Ketones: Autoignition Characteristics and Their Potential as Fuels for HCCI Engines

2013-10-14
2013-01-2627
This paper studies autoignition characteristics and HCCI engine combustion of ketone fuels, which are important constituents of recently discovered fungi-derived biofuels. Two ketone compounds, 2,4-dimethyl-3-pentanone (DMPN) and cyclopentanone (CPN), are systematically investigated in the Sandia HCCI engine, and the results are compared with conventional gasoline and neat ethanol. It is found that CPN has the lowest autoignition reactivity of all the biofuels and gasoline blends tested in this HCCI engine. The combustion timing of CPN is also the most sensitive to intake-temperature (Tin) variations, and it is almost insensitive to intake-pressure (Pin) variations. These characteristics and the overall HCCI performance of CPN are similar to those of ethanol. In contrast, DMPN shows multi-faceted autoignition characteristics. On the one hand, DMPN has strong temperature-sensitivity, even at boosted Pin, which is similar to the low-reactivity ethanol and CPN.
Journal Article

The Effect of Acetylene on Iso-octane Combustion in an HCCI Engine with NVO

2012-09-10
2012-01-1574
Prior studies have shown that fuel addition during negative valve overlap (NVO) can both increase temperature and alter composition of the charge carried over to main HCCI combustion. Late NVO fuel injection, i.e., near top dead center, can cause piston wetting and subsequent localized rich flames. Since acetylene is a product of rich combustion and is known to advance ignition, it is hypothesized that the species could play a chemical role in enhancing main combustion. The objective of this work is to quantify the effects of acetylene on HCCI combustion. While the research topic is specifically relevant to NVO-fueled HCCI operation, the experiments are conducted without NVO fueling to avoid uncertainties of NVO reforming reactions. Instead, a single post-NVO injection of iso-octane fuels the cycle, and acetylene is seeded into the intake flow at varying concentrations to simulate a reformed product of NVO.
Video

Boosted HCCI Combustion Using Low-Octane Gasoline with Fully Premixed and Partially Stratified Charges

2012-06-18
High-load HCCI combustion has recently been demonstrated with conventional gasoline using intake pressure boosting. The key is to control the high combustion heat release rates (HRR) by using combustion timing retard and mixture stratification. However, at naturally aspirated and moderately boosted conditions, these techniques did not work well due to the low autoignition reactivity of conventional gasoline at these conditions. This work studies a low-octane distillate fuel with similar volatility to gasoline, termed Hydrobate, for its potential in HCCI engine combustion at naturally aspirated and low-range boosted conditions. The HCCI combustion with fully premixed and partially stratified charges was examined at intake pressures (Pin) from 100 to 180 kPa and constant intake temperature (60�C) and engine speed (1200 rpm).
Journal Article

Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines with Negative Valve Overlap

2012-04-16
2012-01-1106
An experimental study is performed for homogeneous charge compression ignition (HCCI) combustion focusing on late phasing conditions with high cyclic variability (CV) approaching misfire. High CV limits the feasible operating range and the objective is to understand and quantify the dominating effects of the CV in order to enable controls for widening the operating range of HCCI. A combustion analysis method is developed for explaining the dynamic coupling in sequences of combustion cycles where important variables are residual gas temperature, combustion efficiency, heat release during re-compression, and unburned fuel mass. The results show that the unburned fuel mass carries over to the re-compression and to the next cycle creating a coupling between cycles, in addition to the well known temperature coupling, that is essential for understanding and predicting the HCCI behavior at lean conditions with high CV.
Journal Article

Boosted HCCI Combustion Using Low-Octane Gasoline with Fully Premixed and Partially Stratified Charges

2012-04-16
2012-01-1120
High-load HCCI combustion has recently been demonstrated with conventional gasoline using intake pressure boosting. The key is to control the high combustion heat release rates (HRR) by using combustion timing retard and mixture stratification. However, at naturally aspirated and moderately boosted conditions, these techniques did not work well due to the low autoignition reactivity of conventional gasoline at these conditions. This work studies a low-octane distillate fuel with similar volatility to gasoline, termed Hydrobate, for its potential in HCCI engine combustion at naturally aspirated and low-range boosted conditions. The HCCI combustion with fully premixed and partially stratified charges was examined at intake pressures (Pin) from 100 to 180 kPa and constant intake temperature (60°C) and engine speed (1200 rpm).
Journal Article

Improving Efficiency and Using E10 for Higher Loads in Boosted HCCI Engines

2012-04-16
2012-01-1107
This study systematically investigates the effects of various engine operating parameters on the thermal efficiency of a boosted HCCI engine, and the potential of E10 to extend the high-load limit beyond that obtained with conventional gasoline. Understanding how these parameters can be adjusted and the trade-offs involved is critical for optimizing engine operation and for determining the highest efficiencies for a given engine geometry. Data were acquired in a 0.98 liter, single-cylinder HCCI research engine with a compression-ratio of 14:1, and the engine facility was configured to allow precise control over the relevant operating parameters. The study focuses on boosted operation with intake pressures (Pin) ≥ 2 bar, but some data for Pin < 2 bar are also presented. Two fuels are considered: 1) an 87-octane gasoline, and 2) E10 (10% ethanol in this same gasoline) which has a lower autoignition reactivity for boosted operation.
Journal Article

Investigating the Development of Thermal Stratification from the Near-Wall Regions to the Bulk-Gas in an HCCI Engine with Planar Imaging Thermometry

2012-04-16
2012-01-1111
A tracer-based single-line PLIF imaging technique using a unique optical configuration that allows simultaneously viewing the bulk-gas and the boundary layer region has been applied to an investigation of the naturally occurring thermal stratification in a HCCI engine. Thermal stratification is critical for HCCI engines, because it determines the maximum pressure rise rate which is a limiting factor for high-load operation. The investigation is based on the analysis of temperature maps that were derived from PLIF images, using the temperature sensitivity of fluorescence from toluene introduced as tracer in the fuel. Measurements were made in a single-cylinder optically accessible HCCI engine operating under motored conditions with a vertical laser-sheet orientation that allows observation of the development of thermal stratification from the cold boundary layers into the central region of the charge.
Technical Paper

Optimal Use of Boosting Configurations and Valve Strategies for High Load HCCI - A Modeling Study

2012-04-16
2012-01-1101
This study investigates a novel approach towards boosted HCCI operation, which makes use of all engine system components in order to maximize overall efficiency. Four-cylinder boosted HCCI engines have been modeled employing valve strategies and turbomachines that enable high load operation with significant efficiency benefits. A commercially available engine simulation software, coupled to the University of Michigan HCCI combustion and heat transfer correlations, was used to model the HCCI engines with three different boosting configurations: turbocharging, variable geometry turbocharging and combined supercharging with turbocharging. The valve strategy features switching from low-lift Negative Valve Overlap (NVO) to high-lift Positive Valve Overlap (PVO) at medium loads. The new operating approach indicates that heating of the charge from external compression is more efficient than heating by residual gas retention strategies.
Technical Paper

Detailed Kinetic Modeling of Conventional Gasoline at Highly Boosted Conditions and the Associated Intermediate Temperature Heat Release

2012-04-16
2012-01-1109
The combustion behavior of conventional gasoline has been numerically investigated by means of detailed chemical-kinetic modeling simulations, with particular emphasis on analyzing the chemistry of the intermediate temperature heat release (ITHR). Previous experimental work on highly boosted (up to 325 kPa absolute) HCCI combustion of gasoline (SAE 2020-01-1086) showed a steady increase in the charge temperature up to the point of hot ignition, even for conditions where the ignition point was retarded well after top dead center (TDC). Thus, sufficient energy was being released by early pre-ignition reactions resulting in temperature rise during the early part of the expansion stroke This behavior is associated with a slow pre-ignition heat release (ITHR), which is critical to keep the engine from misfiring at the very late combustion phasings required to prevent knock at high-load boosted conditions.
Journal Article

Detailed Kinetic Modeling of HCCI Combustion with Isopentanol

2011-09-11
2011-24-0023
Isopentanol is an advanced biofuel that can be produced by micro-organisms through genetically engineered metabolic pathways. Compared to the more frequently studied ethanol, isopentanol's molecular structure has a longer carbon chain and includes a methyl branch. Its volumetric energy density is over 30% higher than ethanol, and it is less hygroscopic. Some fundamental combustion properties of isopentanol in an HCCI engine have been characterized in a recent study by Yang and Dec (SAE 2010-01-2164). They found that for typical HCCI operating conditions, isopentanol lacks two-stage ignition properties, yet it has a higher HCCI reactivity than gasoline. The amount of intermediate temperature heat release (ITHR) is an important fuel property, and having sufficient ITHR is critical for HCCI operation without knock at high loads using intake-pressure boosting. Isopentanol shows considerable ITHR, and the amount of ITHR increases with boost, similar to gasoline.
X