Refine Your Search

Search Results

Technical Paper

Performance Analysis and In-Cylinder Visualization of Conventional Diesel and Isobaric Combustion in an Optical Diesel Engine

2021-09-05
2021-24-0040
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve a similar or higher indicated efficiency, lower heat transfer losses, reduced nitrogen oxides (NOx) emissions; however, with a penalty of soot emissions. While the engine performance and exhaust emissions of isobaric combustion are well known, the overall flame development, in particular, the flow-field details within the flames are unclear. In this study, the performance analysis of CDC and two isobaric combustion cases was conducted, followed by high-speed imaging of Mie-scattering and soot luminosity in an optically accessible, single-cylinder heavy-duty diesel engine. From the soot luminosity imaging, qualitative flow-fields were obtained using flame image velocimetry (FIV). The peak motoring pressure (PMP) and peak cylinder pressure (PCP) of CDC are kept fixed at 50 and 70 bar, respectively.
Technical Paper

Flow-Field Analysis of Isobaric Combustion Using Multiple Injectors in an Optical Accessible Diesel Engine

2021-09-05
2021-24-0042
Isobaric combustion has shown the potential of improving engine efficiency by lowering the heat transfer losses. Previous studies have achieved isobaric combustion through multiple injections from a single central injector, controlling injection timing and duration of the injection. In this study, we employed three injectors, i.e. one centrally mounted (C) on the cylinder head and two side-injectors (S), slant-mounted on cylinder head protruding their nozzle tip near piston-bowl to achieve the isobaric combustion. This study visualized the flame development of isobaric combustion, linking flow-field details to the observed trends in engine efficiency and soot emissions. The experiments were conducted in an optically accessible single-cylinder heavy-duty diesel engine using n-heptane as fuel. Isobaric combustion, with a 50 bar peak pressure, was achieved with three different injection strategies, i.e. (C+S), (S+C), and (S+S).
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

Isobaric Combustion for High Efficiency in an Optical Diesel Engine

2020-04-14
2020-01-0301
Isobaric combustion has been proven a promising strategy for high efficiency as well as low nitrogen oxides emissions, particularly in heavy-duty Diesel engines. Previous single-cylinder research engine experiments have, however, shown high soot levels when operating isobaric combustion. The combustion itself and the emissions formation with this combustion mode are not well understood due to the complexity of multiple injections strategy. Therefore, experiments with an equivalent heavy-duty Diesel optical engine were performed in this study. Three different cases were compared, an isochoric heat release case and two isobaric heat release cases. One of the isobaric cases was boosted to reach the maximum in-cylinder pressure of the isochoric one. The second isobaric case kept the same boost levels as the isochoric case. Results showed that in the isobaric cases, liquid fuel was injected into burning gases. This resulted in shorter ignition delays and thus a poor mixing level.
Technical Paper

The Physical and Chemical Effects of Fuel on Gasoline Compression Ignition

2019-04-02
2019-01-1150
In the engine community, gasoline compression ignition (GCI) engines are at the forefront of research and efforts are being taken to commercialize an optimized GCI engine in the near future. GCI engines are operated typically at Partially Premixed Combustion (PPC) mode as it offers better control of combustion with improved combustion stability. While the transition in combustion homogeneity from convectional Compression Ignition (CI) to Homogenized Charge Compression Ignition (HCCI) combustion via PPC has been comprehensively investigated, the physical and chemical effects of fuel on GCI are rarely reported at different combustion modes. Therefore, in this study, the effect of physical and chemical properties of fuels on GCI is investigated. In-order to investigate the reported problem, low octane gasoline fuels with same RON = 70 but different physical properties and sensitivity (S) are chosen.
Technical Paper

Standardized Gasoline Compression Ignition Fuels Matrix

2018-04-03
2018-01-0925
Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new.
Technical Paper

Effect of Aromatics on Combustion Stratification and Particulate Emissions from Low Octane Gasoline Fuels in PPC and HCCI Mode

2017-09-04
2017-24-0086
The objective of this study was to investigate the effect of aromatic on combustion stratification and particulate emissions for PRF60. Experiments were performed in an optical CI engine at a speed of 1200 rpm for TPRF0 (100% v/v PRF60), TPRF20 (20% v/v toluene + 80% PRF60) and TPRF40 (40% v/v toluene + 60% PRF60). TPRF mixtures were prepared in such a way that the RON of all test blends was same (RON = 60). Single injection strategy with a fuel injection pressure of 800 bar was adopted for all test fuels. Start of injection (SOI) was changed from early to late fuel injection timings, representing various modes of combustion viz HCCI, PPC and CDC. High-speed video of the in-cylinder combustion process was captured and one-dimensional stratification analysis was performed from the intensity of images. Particle size, distribution and concentration were measured and linked with the in-cylinder combustion images.
Technical Paper

Fuel Effect on Combustion Stratification in Partially Premixed Combustion

2017-09-04
2017-24-0089
The literature study on PPC in optical engine reveals investigations on OH chemiluminescence and combustion stratification. So far, mostly PRF fuel is studied and it is worthwhile to examine the effect of fuel properties on PPC. Therefore, in this work, fuel having different octane rating and physical properties are selected and PPC is studied in an optical engine. The fuels considered in this study are diesel, heavy naphtha, light naphtha and their corresponding surrogates such as heptane, PRF50 and PRF65 respectively. Without EGR (Intake O2 = 21%), these fuels are tested at an engine speed of 1200 rpm, fuel injection pressure of 800 bar and pressure at TDC = 35 bar. SOI is changed from late to early fuel injection timings to study PPC and the shift in combustion regime from CI to PPC is explored for all fuels. An increased understanding on the effect of fuel octane number, physical properties and chemical composition on combustion and emission formation is obtained.
Journal Article

Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission

2013-04-08
2013-01-0267
Demand for transport energy is growing but this growth is skewed heavily toward commercial transport, such as, heavy road, aviation, marine and rail which uses heavier fuels like diesel and kerosene. This is likely to lead to an abundance and easy availability of lighter fractions like naphtha, which is the product of the initial distillation of crude oil. Naphtha will also require lower energy to produce and hence will have a lower CO₂ impact compared to diesel or gasoline. It would be desirable to develop engine combustion systems that could run on naphtha. Many recent studies have shown that running compression ignition engines on very low Cetane fuels, which are very similar to naphtha in their auto-ignition behavior, offers the prospect of developing very efficient, clean, simple and cheap engine combustion systems. Significant development work would be required before such systems could power practical vehicles.
Journal Article

Fuel Effects on Knock in a Highly Boosted Direct Injection Spark Ignition Engine

2012-09-10
2012-01-1634
Extensive tests have been carried out in a single-cylinder Direct Injection Spark Ignition (DISI) engine using up to fifteen different fuels at inlet pressure of up to 3.4 bar abs. to study fuel effects as well as inlet pressure effects on knock. In addition fuel effects on particulate emissions at part-throttle were measured. Fuel anti-knock quality does not correlate with MON and is best described by the Octane Index, OI = RON-KS where S = RON -MON is the sensitivity of the fuel and K is a constant depending on the engine pressure/temperature regime. The RON of the fuels considered was in the range between 95 and 105 and the sensitivity between 8 and 13. K is negative at all the conditions tested, i.e., for a given RON, a higher sensitivity fuel has better anti-knock quality. K decreases with increasing intake pressure and more generally, decreases as Tcomp₁₅, the temperature of the unburned gas at a pressure of 15 bar decreases.
Journal Article

Butanol Blending - a Promising Approach to Enhance the Thermodynamic Potential of Gasoline - Part 1

2011-08-30
2011-01-1990
Blending gasoline with oxygenates like ethanol, MTBE or ETBE has a proven potential to increase the thermodynamic efficiency by enhancing knock resistance. The present research focuses on assessing the capability of a 2- and tert-butanol mixture as a possible alternative to state-of-the-art oxygenates. The butanol mixture was blended into a non-oxygenated reference gasoline with a research octane number (RON) of 97. The butanol blending ratios were 15% and 30% by mass. Both the thermodynamic potential and the impact on emissions were investigated. Tests are performed on a highly boosted single-cylinder gasoline engine with high load capability and a direct injecting fuel system using a solenoid-actuated multi-hole injector. The engine is equipped with both intake and exhaust cam phasers. The engine has been chosen for the fuel investigation, as it represents the SI technology with a strongly increasing market share.
X