Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Injector Fouling and Its Impact on Engine Emissions and Spray Characteristics in Gasoline Direct Injection Engines

2017-03-28
2017-01-0808
In Gasoline Direct Injection engines, direct exposure of the injector to the flame can cause combustion products to accumulate on the nozzle, which can result in increased particulate emissions. This research observes the impact of injector fouling on particulate emissions and the associated injector spray pattern and shows how both can be reversed by utilising fuel detergency. For this purpose multi-hole injectors were deliberately fouled in a four-cylinder test engine with two different base fuels. During a four hour injector fouling cycle particulate numbers (PN) increased by up to two orders of magnitude. The drift could be reversed by switching to a fuel blend that contained a detergent additive. In addition, it was possible to completely avoid any PN increase, when the detergent containing fuel was used from the beginning of the test. Microscopy showed that increased injector fouling coincided with increased particulate emissions.
Technical Paper

A Study on the Effects of Cetane Number on the Energy Balance between Differently Sized Engines

2017-03-28
2017-01-0805
This paper investigates the effect of the cetane number (CN) of a diesel fuel on the energy balance between a light duty (1.9L) and medium duty (4.5L) diesel engine. The two engines have a similar stroke to bore (S/B) ratio, and all other control parameters including: geometric compression ratio, cylinder number, stroke, and combustion chamber, have been kept the same, meaning that only the displacement changes between the engine platforms. Two Coordinating Research Council (CRC) diesel fuels for advanced combustion engines (FACE) were studied. The two fuels were selected to have a similar distillation profile and aromatic content, but varying CN. The effects on the energy balance of the engines were considered at two operating conditions; a “low load” condition of 1500 rev/min (RPM) and nominally 1.88 bar brake mean effective pressure (BMEP), and a “medium load” condition of 1500 RPM and 5.65 BMEP.
Technical Paper

Effect of Diesel Properties on Emissions and Fuel Consumption from Euro 4, 5 and 6 European Passenger Cars

2016-10-17
2016-01-2246
Certain diesel fuel specification properties are considered to be environmental parameters according to the European Fuels Quality Directive (FQD, 2009/EC/30) and previous regulations. These limits included in the EN 590 specification were derived from the European Programme on Emissions, Fuels and Engine Technologies (EPEFE) which was carried out in the 1990’s on diesel vehicles meeting Euro 2 emissions standards. These limits could potentially constrain FAME blending levels higher than 7% v/v. In addition, no significant work has been conducted since to investigate whether relaxing these limits would give rise to performance or emissions debits or fuel consumption benefits in more modern vehicles. The objective of this test programme was to evaluate the impact of specific diesel properties on emissions and fuel consumption in Euro 4, Euro 5 and Euro 6 light-duty diesel vehicle technologies.
Journal Article

Understanding the Octane Appetite of Modern Vehicles

2016-04-05
2016-01-0834
Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
Technical Paper

An Optical Characterization of the Effect of High-Pressure Hydrodynamic Cavitation on Diesel

2016-04-05
2016-01-0841
Most modern high-pressure common rail diesel fuel injection systems employ an internal pressure equalization system in order to support needle lift, enabling precise control of the injected fuel mass. This results in the return of a fraction of the high-pressure diesel back to the fuel tank. The diesel fuel flow occurring in the injector spill passages is expected to be a cavitating flow, which is known to promote fuel ageing. The cavitation of diesel promotes nano-particle formation through induced pyrolysis and oxidation, which may result in deposits in the vehicle fuel system. A purpose-built high-pressure cavitation flow rig has been employed to investigate the stability of unadditised crude-oil derived diesel and paraffin-blend model diesel, which were subjected to continuous hydrodynamic cavitation flow across a single-hole research diesel nozzle.
Technical Paper

An Optical Characterization of Atomization in Non-Evaporating Diesel Sprays

2016-04-05
2016-01-0865
High-speed planar laser Mie scattering and Laser Induced Fluorescence (PLIF) were employed for the determination of Sauter Mean Diameter (SMD) distribution in non-evaporating diesel sprays. The effect of rail pressure, distillation profile, and consequent fuel viscosity on the drop size distribution developing during primary and secondary atomization was investigated. Samples of conventional crude-oil derived middle-distillate diesel and light distillate kerosene were delivered into an optically accessible mini-sac injector, using a customized high-pressure common rail diesel fuel injection system. Two optical channels were employed to capture images of elastic Mie and inelastic LIF scattering simultaneously on a high-speed video camera at 10 kHz. Results are presented for sprays obtained at maximum needle lift during the injection. These reveal that the emergent sprays exhibit axial asymmetry and vorticity.
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Technical Paper

Combustion and Emissions Performance Analysis of Conventional and Future Fuels using Advanced CAE

2013-10-14
2013-01-2673
In recent years, there has been rapid progress in characterizing the detailed chemical kinetics associated with the oxidation of liquid hydrocarbons and their blends. However adding these fuel models to the industrial engineer's toolkit has proven a major challenge due to issues associated with high CPU cost and the poor suitability of many of the most promising and well known fuel models to IC engine applications. This paper demonstrates the state-of-the-art in the analysis and modelling of current and future transportation fuels or fuel blends for internal combustion engine applications. First-of-all, a benchmarking of eleven representative fuel models (39 to 1034 species in size) is carried out at engine/engine-like operating conditions by adopting the standard Research Octane and Cetane Number test data for comparison. Next, methods to construct a fuel model for a commercial fuel are outlined using a simple, yet robust surrogate mapping technique.
Technical Paper

The Response of a Closed Loop Controlled Diesel Engine on Fuel Variation

2008-10-06
2008-01-2471
An investigation was conducted to elucidate, how the latest turbocharged, direct injection Volkswagen diesel engine generation with cylinder pressure based closed loop control, to be launched in the US in 2008, reacts to fuel variability. A de-correlated fuels matrix was designed to bracket the range of US market fuel properties, which allowed a clear correlation of individual fuel properties with engine response. The test program consisting of steady state operating points showed that cylinder pressure based closed loop control successfully levels out the influence of fuel ignition quality, showing the effectiveness of this new technology for markets with a wide range of fuel qualities. However, it also showed that within the cetane range tested (39 to 55), despite the constant combustion mid-point, cetane number still has an influence on particulate and gaseous emissions. Volatility and energy density also influence the engine's behavior, but less strongly.
Technical Paper

Relevance of Research and Motor Octane Numbers to the Prediction of Engine Autoignition

2004-06-08
2004-01-1970
Links between the RON, MON and Octane Index (OI) of a gasoline are explored and factors influencing knock severity are discussed. The OI was calculated by considering how the autoignition delay time changes with temperature and pressure. Three fuels were examined: a 65/35% toluene/heptane test fuel, and two primary reference fuels (PRF), one with the RON value of the test fuel and the other with the MON value. PRF autoignition times were taken from Adomeit et al and test fuel autoignition times were generated from mathematical models of RON/MON tests plus two experimental sets of engine autoignition data. The toluene/heptane OI depended strongly on engine conditions and could easily exceed the RON. With a lean mixture at high pressure it was 100.2 whereas the RON was only 83.9. Knock severity is governed by the nature of localized “hot spots”. Severe knock is associated with developing detonations towards the end of the delay time.
Technical Paper

Combustion Imaging and Analysis in a Gasoline Direct Injection Engine

2004-03-08
2004-01-0045
A single cylinder Direct Injection Spark Ignition (DISI) engine with optical access has been used for combustion studies with both early injection and late injection for stratified charge operation. Cylinder pressure records have been used for combustion analysis that has been synchronised with the imaging. A high speed cine camera has been used for imaging combustion within a cycle, while a CCD camera has been used for imaging at fixed crank angles, so as to obtain information on cycle-by-cycle variations. The CCD images have also been analysed to give information on the quantity of soot present during combustion. Tests have been conducted with a reference unleaded gasoline (ULG), and pure fuel components: iso-octane (a representative alkane), and toluene (a representative aromatic). The results show diffusion-controlled combustion occurring in so-called homogeneous combustion with early injection.
Technical Paper

Amplified Pressure Waves During Autoignition: Relevance to CAI Engines

2002-10-21
2002-01-2868
Controlled autoignition (CAI) engines ideally operate at very lean stoichiometries to achieve low NOx emissions. But at high loads, when combustion approaches stoichiometric, they become noisy and severe engine knock develops. A possible cause is the development of amplifying pressure waves near the hot spots that inevitably occur in the autoigniting gas. This paper presents the results from numerical solutions at realistic engine conditions of the detailed chemical kinetic equations with acoustic wave propagation. Those calculations that involve hot spots must include a spatial dimension. Because of this, they are much more time-consuming than for the homogeneous case. A model system of mixtures of 0.5 H2-0.5 CO with air for equivalence ratios, ϕ, between 0.45 and 1.0 has been used at engine-like temperatures and pressures. These calculations investigate the behaviour for various values of ϕ, hot spot size and temperature elevation.
Technical Paper

Fuel Anti-Knock Quality - Part I. Engine Studies

2001-09-24
2001-01-3584
This is the first part of a two-part study on how to define the anti-knock quality of practical fuels. Knock intensity is measured in two single-cylinder research engines using different fuels at different mixture strengths, throttle settings and two compression ratios. The anti-knock quality of a fuel in a given engine operating condition is defined by its octane index OI = RON - KS where K is a constant for that condition and S is the sensitivity, (RON-MON), and RON and MON are the Research and Motor Octane numbers respectively. The higher the octane index, the better the anti-knock quality of the fuel. K is often assumed to be 0.5 so that OI=(RON+MON)/2. However, it is found that K depends on engine operating conditions and in some cases, K is negative so that for a given RON, a fuel with higher sensitivity (lower MON) has better anti-knock quality. The value of K decreases as the engine becomes more prone to knock i.e. as its octane requirement increases.
X