Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Impact of Demanding Low Temperature Urban Operation on the Real Driving Emissions Performance of Three European Diesel Passenger Cars

2018-09-10
2018-01-1819
In Europe, the development and implementation of new regulatory test procedures including the chassis dynamometer (CD) based World Harmonised Light Duty Test Procedure (WLTP) and the Real Driving Emissions (RDE) procedure, has been driven by the close scrutiny that real driving emissions and fuel consumption from passenger cars have come under in recent times. This is due to a divergence between stated certification performance and measured on-road performance, and has been most pointed in the case of NOx (oxides of nitrogen) emissions from diesel cars. The RDE test is certainly more relevant than CD test cycles, but currently certification RDE cycles will not necessarily include the most extreme low speed congested or low temperature conditions which are likely to be more challenging for NOx after-treatment systems.
Journal Article

Development of a Fuel System Cleanliness Test Method in a Euro 4 Direct-Injection Gasoline Engine (VW 1.4 L TSI 90 kW)

2017-10-08
2017-01-2296
Driven by increasingly stringent tailpipe CO2 and fuel economy regulations, gasoline direct injection (GDI) engines are enjoying rapidly increasing market penetration. Already more than 50% of newly produced vehicles in the US and western Europe employ direct-injection technology and many markets in Asia are also seeing an increasingly rapid uptake. However, with the adoption of GDI engine technology, which is able to push the boundaries of engine efficiency, new challenges are starting to arise such as injector nozzle deposits, which can adversely affect performance. Multi-hole solenoid actuated fuel injectors are particularly vulnerable to deposits formed when operated on some market fuels. In order to address this challenge, the development of a reliable industry test platform for injector cleanliness in GDI engines is currently underway in both the US and Europe.
Journal Article

Analysis of a Diesel Passenger Car Behavior On-Road and over Certification Duty Cycles

2016-10-17
2016-01-2328
Precise, repeatable and representative testing is a key tool for developing and demonstrating automotive fuel and lubricant products. This paper reports on the first findings of a project that aims to determine the requirements for highly repeatable test methods to measure very small differences in fuel economy and powertrain performance. This will be underpinned by identifying and quantifying the variations inherent to this specific test vehicle, both on-road and on Chassis Dynamometer (CD), that create a barrier to improved testing methods. In this initial work, a comparison was made between on-road driving, the New European Drive Cycle (NEDC) and World harmonized Light-duty Test Cycle (WLTC) cycles to understand the behavior of various vehicle systems along with the discrepancies that can arise owing to the particular conditions of the standard test cycles.
Journal Article

Formation and Removal of Injector Nozzle Deposits in Modern Diesel Cars

2013-04-08
2013-01-1684
Deposits forming in the injector nozzle holes of modern diesel cars can reduce and disrupt the fuel injected into the combustion chamber, causing reduced or less efficient combustion, resulting in power loss and increased fuel consumption. A study of the factors affecting injector nozzle tip temperature, a parameter critical to nozzle deposit formation, has been conducted in a Peugeot DW10 passenger car bench engine, as used in the industry standard CEC F-098 injector nozzle deposit test, [1]. The findings of the bench engine study were applied in the development of a Chassis Dynamometer (CD) based vehicle test method using Euro 5 compliant vehicles. The developed test method was refined to tune the conditions as far as practicable towards a realistic driving pattern whilst maintaining sufficient deposit forming tendency to enable test duration to be limited to a reasonable period.
Technical Paper

Octane Sensitivity in Gasoline Fuels Containing Nitro-Alkanes: A Possible Means of Controlling Combustion Phasing for HCCI

2009-04-20
2009-01-0301
Addition of nitroalkanes to gasoline is shown to reduce the octane quality. The reduction in the Motor Octane Number (MON) is greater than the reduction in the Research Octane Number (RON). In other words addition of nitroalkanes causes an increase in octane sensitivity. The temperature of the compressed air/fuel mixture in the MON test is higher then in the RON test. Through chemical kinetic modelling, we are able to show how the temperature dependence of the reactions responsible for break-up of the nitroalkane molecule can lead to an increase in octane sensitivity. Results are presented from an Homogenous Charge Compression Ignition (HCCI) engine with a homogeneous charge in which the air intake temperature was varied. When the engine was operated on gasoline-like fuels containing nitroalkanes, it was observed that the combustion phasing was much more sensitive to the air intake temperature. This suggests a possible means of controlling combustion phasing for HCCI.
Technical Paper

Developing a Precision and Severity Monitoring System for CEC Performance Tests

2004-06-08
2004-01-1892
The Coordinating European Council, CEC, develops performance tests for the motor, oil, petroleum, additive and allied industries. In recent years, CEC has moved away from using round robin programmes (RRP's) for monitoring the precision and severity of test methods in favour of regular referencing within a test monitoring system (TMS). In a TMS, a reference sample of known performance, determined by cross-laboratory testing, is tested at regular intervals at each laboratory. The results are plotted on control charts and determine whether the installation is and continues to be fit to evaluate products. Results from all laboratories are collated and combined to monitor the general health of the test. The TMS approach offers considerable benefits in terms of detecting test problems and improving test quality. However, the effort required in collating data for statistical analysis is much greater, and there are technical difficulties in determining precision from TMS data.
Technical Paper

A Critical Road Test Evaluation of a High-Performance Gasoline Additive Package in a Fleet of Modern European and Asian Vehicles

2004-06-08
2004-01-2027
A road test has been conducted to quantify the benefits provided by a high-performance gasoline additive package in a fleet of cars representative of Europe, SE Asia, and South America. The emissions, fuel consumption, and engine cleanliness benefits of additised versus untreated gasoline were compared in 15 pairs of cars. A further 6 cars were operated on a mixture of fuels to show the benefits of additised fuel versus mixed fuelling. The design of the experiment was based on a similar road test conducted in 1991. Through careful test design and execution, it has been possible to assess the performance of the package at a high statistical confidence level. The package provides a high level of inlet system cleanliness, a significant reduction in fuel consumption and reduced HC emissions.
Technical Paper

Lubrication, Tribology & Motorsport

2002-12-02
2002-01-3355
We review some of the key tribological issues of relevance to motorsport applications. Tribology is the science of friction and wear, and in a high performance engine, friction and wear are controlled by good component design (e.g. the engine and the transmission) and also by the use of high performance lubricants with the correct physical (and chemical) properties, matched to the machine they are used in. In other words, design of a specific lubricant for specific hardware can lead to optimised performance. (Tribology is also important in the tire-road contact but are not considered here.) The importance of key physical properties of a lubricant is demonstrated with an emphasis on how the choice of the correct lubricant can help to minimize engine friction (and thus increase available power output) whilst protecting against engine wear. Key lubricant parameters discussed in the paper are the viscosity variation of a lubricant with temperature, shear rate and pressure.
Technical Paper

The M111 Engine CCD and Emissions Test: Is it Relevant to Real-World Vehicle Data?

2002-05-06
2002-01-1642
A European test procedure for evaluating engine deposits, using the Mercedes Benz M111 bench engine, has already been approved for inlet valve deposits (IVD) and is under development for combustion chamber deposits (CCD) by the Co-ordinating European Council (CEC). This paper describes CCD effects on emissions using a slightly modified version of this engine test procedure and compares it with CCD/emissions data from road vehicles. The engine used was a modern four valve, four cylinder, 2.0 litre passenger car unit and the bench test procedure used extended the operating time from the specified 60 hours to 180 hours. The road vehicle trial used two Mercedes Benz C200 passenger cars fitted with the M111 engine and two Ford Mondeo 2.0 litre passenger cars. Data was collected up to 11200km, approximately equivalent to 180 hours operation of the bench engine.
X