Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Ruthenium-Based Catalyst in EGR Leg of a D-EGR Engine Offers Combustion Improvements Through Selective NOX Removal

2016-04-05
2016-01-0952
A recent collaborative research project between Southwest Research Institute® (SwRI®) and the University of Texas at San Antonio (UTSA) has demonstrated that a ruthenium (Ru) catalyst is capable of converting oxides of nitrogen (NOX) emissions to nitrogen (N2) with high activity and selectivity. Testing was performed on coated cordierite ceramic cores using SwRI’s Universal Synthetic Gas Reactor® (USGR®). Various gas mixtures were employed, from model gas mixes to full exhaust simulant gas mixes. Activity was measured as a function of temperature, and gaseous inhibitors and promoters were identified. Different Ru supports were tested to identify ones with lowest temperature activity. A Ru catalyst can be used in the exhaust gas recirculation (EGR) leg of a Dedicated-EGR (D-EGR) engine [1,2], where it uses carbon monoxide (CO) and hydrogen (H2) present in the rich gas environment to reduce NOX to N2 with 100% efficiency and close to 100% selectivity to N2.
Technical Paper

Water-Gas-Shift Catalyst Development and Optimization for a D-EGR® Engine

2015-09-01
2015-01-1968
Dedicated Exhaust Gas Recirculation (D-EGR®) technology provides a novel means for fuel efficiency improvement through efficient, on-board generation of H2 and CO reformate [1, 2]. In the simplest form of the D-EGR configuration, reformate is produced in-cylinder through rich combustion of the gasoline-air charge mixture. It is also possible to produce more H2 by means of a Water Gas Shift (WGS) catalyst, thereby resulting in further combustion improvements and overall fuel consumption reduction. In industrial applications, the WGS reaction has been used successfully for many years. Previous engine applications of this technology, however, have only proven successful to a limited degree. The motivation for this work was to develop and optimize a WGS catalyst which can be employed to a D-EGR configuration of an internal combustion engine. This study consists of two parts.
Technical Paper

Identifying Limiters to Low Temperature Catalyst Activity

2015-04-14
2015-01-1025
The drive to more fuel efficient vehicles is underway, with passenger car targets of 54.5 mpg fleet average by 2025. Improving engine efficiency means reducing losses such as the heat lost in the exhaust gases. However, reducing exhaust temperature makes it harder for emissions control catalysts to function because they require elevated temperatures to be active. Addressing this conundrum was the focus of the work performed. The primary objective of this work was to identify low temperature limiters for a variety of catalyst aftertreatment types. The ultimate goal is to reduce catalyst light-off temperatures, and the knowledge needed is an understanding of what prevents a catalyst from lighting off, why, and how it may be mitigated. Collectively these are referred to here as low temperature limiters to catalyst activity.
Video

SCR Deactivation Kinetics for Model-Based Control and Accelerated Aging Applications

2012-06-18
This paper forms the third of a series and presents results obtained during the testing and development phase of a dedicated range extender engine designed for use in a compact class vehicle. The first paper in this series used real world drive logs to identify usage patterns of such vehicles and a driveline model was used to determine the power output requirements of a range extender engine for this application. The second paper presented the results of a design study. Key attributes for the engine were identified, these being minimum package volume, low weight, low cost, and good NVH. A description of the selection process for identifying the appropriate engine technology to satisfy these attributes was given and the resulting design highlights were described. The paper concluded with a presentation of the resulting specification and design highlights of the engine. This paper will present the resulting engine performance characteristics.
Video

Brief Investigation of SCR High Temperature N2O Production

2012-06-18
Nitrous Oxide (N2O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 [1,2] (298-310 times more potent than carbon dioxide (CO2)). As a result, any aftertreatment system that generates N2O must be well understood to be used effectively. Under low temperature conditions, N2O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N2O formed by the thermal decomposition of ammonium nitrate [3]. Ammonium nitrate and N2O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO2)[4]. This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO2 ratio above 1. However, N2O has also been observed at relatively high temperatures, in the region of 500°C.
Video

SCR Deactivation Study for OBD Applications

2012-06-18
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications [1,2,3,4]. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH3) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH3 transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Journal Article

Brief Investigation of SCR High Temperature N2O Production

2012-04-16
2012-01-1082
Nitrous Oxide (N₂O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 (298-310 times more potent than carbon dioxide (CO₂)). As a result, any aftertreatment system that generates N₂O must be well understood to be used effectively. Under low temperature conditions, N₂O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N₂O formed by the thermal decomposition of ammonium nitrate. Ammonium nitrate and N₂O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO₂). This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO₂ ratio above 1. However, N₂O has also been observed at relatively high temperatures, in the region of 500°C.
Technical Paper

Updating China Heavy-Duty On-Road Diesel Emission Regulations

2012-04-16
2012-01-0367
With the rapid expansion of the automotive market in China, air quality in the major cities has become a severe concern. Great efforts have been made in introducing new emission regulations; however, fuel and lubricant qualities, emissions aftertreatment system durability and in-use compliance to the emissions regulations still require significant improvement. China follows the European Union (EU) emission regulations in general, but different levels of standards exist. This paper gives a comprehensive overview of the current and near-future heavy-duty diesel emission regulations, as well as fuel and lubricant specifications.
Technical Paper

SCR Deactivation Kinetics for Model-Based Control and Accelerated Aging Applications

2012-04-16
2012-01-1077
Selective Catalytic Reduction (SCR) catalysts are used to reduce NOx emissions from internal combustion engines in a variety of applications. Southwest Research Institute (SwRI) performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO₂ formulation, a Cu-zeolite formulation and a Fe-zeolite formulation. This work describes NH₃ storage capacity measurement data as a function of aging time and temperature. Addressing one objective of the work, these data can be used in model-based control algorithms to calculate the current NH₃ storage capacity of an SCR catalyst operating in the field, based on time and temperature history. The model-based control then uses the calculated value for effective DEF control and prevention of excessive NH₃ slip. Addressing a second objective of the work, accelerated thermal aging of SCR catalysts may be achieved by elevating temperatures above normal operating temperatures.
Technical Paper

SCR Deactivation Study for OBD Applications

2012-04-16
2012-01-1076
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO₂ formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH₃) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH₃ transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Video

Evaluation of a NOx Transient Response Method for OBD of SCR Catalysts

2012-01-30
OBD requirements for aftertreatment system components require monitoring of the individual system components. One such component can be an NH3-SCR catalyst for NOx reduction. An OBD method that has been suggested is to generate positive or negative spikes in the inlet NH3 concentration, and monitor the outlet NOx transient response. A slow response indicates that the catalyst is maintaining its NH3 storage capacity, and therefore it is probably not degraded. A fast response indicates the catalyst has lost NH3 storage capacity, and may be degraded. The purpose of the work performed at Southwest Research Institute was to assess this approach for feasibility, effectiveness and practicality. The presentation will describe the work performed, results obtained, and implications for applying this method in test laboratory and real-world situations. Presenter Gordon J. Bartley, Southwest Research Institute
Technical Paper

Development of a Novel Device to Improve Urea Evaporation, Mixing and Distribution to Enhance SCR Performance

2010-04-12
2010-01-1185
A novel urea evaporation and mixing device has been developed to improve the overall performance of a urea-SCR system. The device was tested with a MY2007 Cummins ISB 6.7L diesel engine equipped with an SCR aftertreatment system. Test results show that the device effectively improved the overall NO conversion efficiency of the SCR catalyst over both steady-state and transient engine operating conditions, while NH₃ slip from the catalyst decreased.
Technical Paper

Simultaneous Reduction of PM, HC, CO and NOx Emissions from a GDI Engine

2010-04-12
2010-01-0365
Particulate Matter (PM) emissions from gasoline direct injection (GDI) engines are becoming a concern and will be limited by future emissions regulations, such as the upcoming Euro 6 legislation. Therefore, PM control from a GDI engine will be required in addition to effective reduction of HC, CO and NOx emissions. Three different integrated aftertreatment systems were developed to simultaneously reduce PM, HC, CO and NOx emissions from a preproduction Ford 3.5L EcoBoost GTDI engine, with PM reduction as the major focus. PM reduction efficiencies were calculated based on the measurements of PM mass and solid particle number. Test results show that tradeoffs exist in the design of aftertreatment systems to significantly reduce PM emissions from a GDI engine.
Technical Paper

Dependence of Fuel Consumption on Engine Backpressure Generated by a DPF

2010-04-12
2010-01-0535
In recent years, Diesel Particulate Filter (DPF) systems have become the state-of-the-art technology to realize low particulate emission for light, medium or heavy-duty diesel vehicles. In addition to good filtration efficiency and thermo-mechanical robustness, the engine backpressure resulted from the DPF installation is an important parameter which directly impacts the fuel economy of the engine. The goal of this experimental test series was to determine the dependence of fuel consumption on engine backpressure resulted from a DPF installed on a heavy-duty application. The testing was executed on a MY2003 Volvo D12 heavy-duty diesel engine in an engine test cell at Southwest Research Institute (SwRI). Empty DPF cans were used with an exhaust valve to mimic the post turbo pressure levels for two different types of DPF materials at nine selected engine operating points of the European Stationary Cycle (ESC).
Journal Article

EGR System Fouling Control

2008-04-14
2008-01-0066
Exhaust gas recirculation (EGR) is effective in reducing engine-out NOx emissions; however, the EGR system is subject to fouling and corrosion. Fouling is mainly due to particulate buildup on the EGR component (e.g., EGR valve and cooler) surfaces. Corrosion is primarily related to oxides of sulfur and nitrogen in the gas stream, especially problematic when condensation occurs [1]. Because cooled EGR is most effective in controlling NOx emissions, EGR cooler design and operation are important considerations in engine design in order to meet durability requirements. An approach has been developed to greatly reduce EGR system fouling. Four EGR coolers were tested simultaneously with various PM control devices installed upstream of the cooler. System configuration and on-engine test results are presented herein.
Technical Paper

Validation Method for Diesel Particulate Filter Durability

2007-10-29
2007-01-4086
The diesel particulate filter (DPF) is a critical aftertreatment device for control of particulate matter (PM) emissions from a diesel engine. DPF survivability is challenged by several key factors such as: excessive thermal stress due to DPF runaway regenerations (or uncontrolled regeneration) may cause DPF substrate and washcoat failure. Catalyst poisoning elements from the diesel fuel and engine oil may cause performance degradation of the catalyzed DPF. Harsh vibration from the powertrain, as well as from the road surface, may lead to mechanical failure of the substrate and/or the matting material. Evaluations of these important validation parameters were performed.
Technical Paper

Feasibility Investigation of a High-Efficiency NOx Aftertreatment System for Diesel Engines

2007-10-29
2007-01-3983
A high-efficiency NOx aftertreatment system has been proposed for use in Diesel engines. This system includes a Lean NOx Trap (LNT) in series with a Selective Catalyst Reduction (SCR) catalyst [6], [7], [8], and is hereinafter referred to as the LNT-SCR system. The combined LNT-SCR system can potentially overcome many of the drawbacks of LNT-only and SCR-only operation and achieve very high NOx conversion efficiency without external addition of ammonia (or urea). A laboratory test procedure was developed to validate the LNT-SCR system concept, and a series of tests was conducted to test the NOx conversion of this system under various conditions. A Synthetic Gas Reactor (SGR) system was modified to accommodate LNT and SCR catalyst cores and synthetic gas mixtures were used to simulate rich-lean regeneration cycles from a diesel engine. A Fourier Transform Infrared (FTIR) system was used to measure gas compositions within the LNT-SCR system.
Technical Paper

Methodologies to Control DPF Uncontrolled Regenerations

2006-04-03
2006-01-1090
Diesel particulate filters (DPF) have been shown to effectively reduce particulate emissions from diesel engines. However, uncontrolled DPF regeneration can easily damage the DPF. In this paper, three different types of uncontrolled DPF regeneration are defined. They are: Type A: Uncontrolled high initial exotherm at the start of DPF regeneration, Type B: “Runaway” or uncontrolled regeneration, which takes place when the engine goes to idle during normal DPF regeneration, and Type C: Uneven soot distribution causing excess thermal stress during normal DPF regeneration. In this paper, different control strategies are developed for each of the three types of uncontrolled DPF regenerations. These control strategies include SOF control, exhaust flow pattern improvement, as well as EGR control through intake throttling and A/F ratio control.
X