Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Combined Fuel and Lubricant Effects on Low Speed Pre-Ignition

Many studies on low speed pre-ignition have been published to investigate the impact of fuel properties and of lubricant properties. Fuels with high aromatic content or higher distillation temperatures have been shown to increase LSPI activity. The results have also shown that oil additives such as calcium sulfonate tend to increase the occurrence of LSPI while others such as magnesium sulfonate tend to decrease the occurrence. Very few studies have varied the fuel and oil properties at the same time. This approach is useful in isolating only the impact of the oil or the fuel, but both fluids impact the LSPI behavior of the engine simultaneously. To understand how the lubricant and fuel impacts on LSPI interact, a series of LSPI tests were performed with a matrix which combined fuels and lubricants with a range of LSPI activity. This study was intended to determine if a low activity lubricant could suppress the increased LSPI from a high activity fuel, and vice versa.
Journal Article

The Impact of Lubricant Volatility, Viscosity and Detergent Chemistry on Low Speed Pre-Ignition Behavior

The impact of additive and oil chemistry on low speed pre-ignition (LSPI) was evaluated. An additive metals matrix varied the levels of zinc dialkyldithiophosphate (ZDDP), calcium sulfonate, and molybdenum within the range of commercially available engine lubricants. A separate test matrix varied the detergent chemistry (calcium vs. magnesium), lubricant volatility, and base stock chemistry. All lubricants were evaluated on a LSPI test cycle developed by Southwest Research Institute within its Pre-Ignition Prevention Program (P3) using a GM LHU 2.0 L turbocharged GDI engine. It was observed that increasing the concentration of calcium leads to an increase in the LSPI rate. At low calcium levels, near-zero LSPI rates were observed. The addition of zinc and molybdenum additives had a negative effect on the LSPI rate; however, this was only seen at higher calcium concentrations.
Technical Paper

Investigation of Lubrication Oil as an Ignition Source in Dual Fuel Combustion Engine

Dual fuel engines have shown significant potential as high efficiency powerplants. In one example, SwRI® has run a high EGR, dual-fuel engine using gasoline as the main fuel and diesel as the ignition source, achieving high thermal efficiencies with near zero NOx and smoke emissions. However, assuming a tank size that could be reasonably packaged, the diesel fuel tank would need to be refilled often due to the relatively high fraction of diesel required. To reduce the refill interval, SwRI investigated various alternative fluids as potential ignition sources. The fluids included: Ultra Low Sulfur Diesel (ULSD), Biodiesel, NORPAR (a commercially available mixture of normal paraffins: n-pentadecane (normal C15H32), and n-hexadecane (normal C16H34)) and ashless lubrication oil. Lubrication oil was considered due to its high cetane number (CN) and high viscosity, hence high ignitability.