Refine Your Search



Search Results

Technical Paper

Particle Emissions from Gasoline Direct Injection Engines during Engine Start-Up (Cranking)

Engine start-up (cranking) can be an important source of particle emissions from vehicles. With the penetration of GDI vehicles in the global vehicle fleet, it is important to analyze and understand the contribution of start-up particle emissions from GDI vehicles, and the potential effects of fuel properties on that process. In this work, chassis dynamometer based investigation on the effect of several gasoline fuels (commercial and blended) on both, naturally aspirated and turbocharged GDI vehicles were conducted to understand the importance of engine start up, in particular, cranking. 10 commercially available gasoline fuels were tested on a naturally aspirated 2010 model year GDI vehicle, 3 among these commercially available fuels were tested on another 2009 model year turbocharged GDI vehicle, and 8 blended gasoline fuels were tested on 12 other GDI vehicles (7 turbocharged and 5 naturally aspirated) ranging in model years 2011-2015.
Technical Paper

Connected Commercial Vehicles

While initial Connected Vehicle research in the United States was focusing almost exclusively on passenger vehicles, a program was envisioned that would enhance highway safety, mobility, and operational efficiencies through the application of the technology to commercial vehicles. This program was realized in 2009 by funding from the I-95 Corridor Coalition, led by the New York State Department of Transportation, and called the Commercial Vehicle Infrastructure Integration (CVII) program. The CVII program focuses on developing, testing and deploying Connected Vehicle technology for heavy vehicles. Since its inception, the CVII program has developed numerous Vehicle-to-Vehicle and Vehicle-to-Infrastructure applications for trucks that leverage communication with roadside infrastructure and other light and heavy duty vehicles to meet the objectives of the program.
Journal Article

Automated Driving Impediments

Since the turn of the millennium, automated vehicle technology has matured at an exponential rate, evolving from research largely funded and motivated by military and agricultural needs to a near-production market focused on everyday driving on public roads. Research and development has been conducted by a variety of entities ranging from universities to automotive manufacturers to technology firms demonstrating capabilities in both highway and urban environments. While this technology continues to show promise, corner cases, or situations outside the average driving environment, have emerged highlighting scenarios that impede the realization of full automation anywhere, anytime. This paper will review several of these corner cases and research deficiencies that need to be addressed for automated driving systems to be broadly deployed and trusted.
Technical Paper

Port Design for Charge Motion Improvement within the Cylinder

The engine intake process governs many aspects of the flow within the cylinder. The inlet valve is the minimum area, so gas velocities at the valve are the highest velocities seen. Geometric configuration of the inlet ports and valves, and the opening schedule create organized large scale motions in the cylinder known as swirl and tumble. Good charge motion within the cylinder will produce high turbulence levels at the end of the compression stroke. As the turbulence resulting from the conversion energy of the inlet jet decays fast, the strategy is to encapsulate some of the inlet jet in the organized motions. In this work the baseline port of a 2.0 L gasoline engine was modified by inserting a tumble plate. The work was done in support of an experimental study for which a new single-cylinder research engine was set up to allow combustion system parameters to be varied in steps over an extensive range. Tumble flow was one such parameter.
Technical Paper

Trusting LTE Communications for Over-the-Air Updates in Automobiles

Modern vehicular systems rely on millions of lines of code that must occasionally be updated to add new functions or to patch flaws to ensure safe and secure operation. Updates accomplished through a compromised cellular base station could lead to an update process that may be vulnerable to attack. We have been investigating techniques for determining whether an LTE base station (known as an eNodeB) appears to be suspicious, so that an update could be paused or terminated until a trusted eNodeB is available. We describe a detector we developed as part of our research that scans LTE signals for anomalies and provides an alert when an anomaly is found.
Journal Article

Understanding the Octane Appetite of Modern Vehicles

Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
Journal Article

Test Protocols for Motorcoach Fire Safety

The Department of Transportation (DOT) National Highway Traffic Safety Administration (NHTSA) awarded a contract to Southwest Research Institute (SwRI) to conduct research and testing in the interest of motorcoach fire safety. The goal of this program was to develop and validate procedures and metrics to evaluate current and future detection, suppression, and exterior fire-hardening technologies that prevent or delay fire penetration into the passenger compartment of a motorcoach - in order to increase passenger evacuation time. The program was initiated with a literature review and characterization of the thermal environment of motorcoach fires and survey of engine compartments, firewalls, and wheel wells of motorcoaches currently in North American service. These characterizations assisted in the development of test methods and identification of the metrics for analysis. Test fixtures were designed and fabricated to simulate a representative engine compartment and wheel well.

Overview of Southwest Research Institute Activities in Engine Technology R&D

The worldwide drive to improved energy efficiency for engine systems is being supported by several engine R&D programs at Southwest Research Institute (SwRI). This research includes large programs in major-market engine categories, such as heavy-duty, non-road, and light-duty; and includes diesel, gasoline, and alternative fuel aspects. This presentation describes several key diesel engine programs being pursued under the SwRI Clean High Efficiency Diesel Engine consortium (CHEDE-VI), whose goal is to demonstrate future diesel technology exceeding 50% brake thermal efficiency. Additionally, SwRI?s High Efficiency Dilute Gasoline Engines consortium (HEDGE-II), is reviewed, where advanced technology for ultra-high efficiency gasoline engines is being demonstrated. The HEDGE-II program is built upon dilute gasoline engine research, where brake thermal efficiencies in excess of 42% are being obtained for engines applicable to the light-duty market. Presenter Charles E.
Technical Paper

SCR Deactivation Study for OBD Applications

Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO₂ formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH₃) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH₃ transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Journal Article

Development of a Structurally Optimized Heavy Duty Diesel Cylinder Head Design Capable of 250 Bar Peak Cylinder Pressure Operation

Historically, heavy-duty diesel (HDD) engine designs have evolved along the path of increased power output, improved fuel efficiency and reduced exhaust gas emissions, driven both by regulatory and market requirements. The various technologies employed to achieve this evolution have resulted in ever-increasing engine operating cylinder pressures, higher than for any other class of internal combustion engine. Traditional HDD engine design architecture limits peak cylinder pressure (PCP) to about 200 bar (2900 psi). HDD PCP had steadily increased from the early 1970's until the mid 2000's, at which point the structural limit was reached using traditional methods and materials. Specific power output reversed its historical trend and fell at this time as a result of technologies employed to satisfy new emissions requirements, most notably exhaust gas recirculation (EGR).
Journal Article

Scuderi Split Cycle Research Engine: Overview, Architecture and Operation

The Scuderi engine is a split cycle design that divides the four strokes of a conventional combustion cycle over two paired cylinders, one intake/compression cylinder and one power/exhaust cylinder, connected by a crossover port. This configuration provides potential benefits to the combustion process, as well as presenting some challenges. It also creates the possibility for pneumatic hybridization of the engine. This paper reviews the first Scuderi split cycle research engine, giving an overview of its architecture and operation. It describes how the splitting of gas compression and combustion into two separate cylinders has been simulated and how the results were used to drive the engine architecture together with the design of the main engine systems for air handling, fuel injection, mixing and ignition. A prototype engine was designed, manufactured, and installed in a test cell. The engine was heavily instrumented and initial performance results are presented.
Technical Paper

Verification of a Gaseous Portable Emissions Measurement System with a Laboratory System Using the Code of Federal Regulations Part 1065

This paper summarizes the validation testing of the Horiba Instruments OBS-2200 gaseous portable emissions measurement system (PEMS) for in-use compliance testing per Title 40 of the Code of Federal Regulations (CFR) Part 1065.920 (Section 1065.920). The qualification process included analyzer verifications as well as engine testing on a model-year 2007 heavy-duty diesel engine produced by Volvo Powertrain. The measurements of brake-specific emissions with the OBS-2200 were compared to those of a CFR Part 1065-compliant CVS test cell over a series of not-to-exceed (NTE) events. The OBS-2200 passed all linearity verifications and analyzer checks required of PEMS. Engine test validation was achieved for all three regulated gaseous emissions (CO, NMHC, and NOX) per 40 CFR Part 1065.920(b)(5)(i), which requires a minimum of 91 percent of the measurement allowance adjusted deltas to be less than or equal to zero.
Technical Paper

Aging of Zeolite Based Automotive Hydrocarbon Traps

This paper analyzes the aging of zeolite based hydrocarbon traps to guide development of diagnostic algorithms. Previous research has shown the water adsorption ability of zeolite ages along with the hydrocarbon adsorption ability, and this leads to a possible diagnostic algorithm: the water concentration in the exhaust can be measured and related to aging. In the present research, engine experiments demonstrate that temperature measurements are also related to aging. To examine the relationship between temperature-based and moisture-based diagnostic algorithms, a transient, nonlinear heat and mass transfer model of the exhaust during cold-start is developed. Despite some idealizations, the model replicates the qualitative behavior of the exhaust system. A series of parametric studies reveals the sensitivity of the system response to aging and various noise factors.
Technical Paper

Assessment of Technology Readiness Level of a Carbon Dioxide Reduction Assembly (CRA) for Use on International Space Station

When technologies are traded for incorporation into vehicle systems to support a specific mission scenario, they are often assessed in terms of “Technology Readiness Level” (TRL). TRL is based on three major categories of Core Technology Components, Ancillary Hardware and System Maturity, and Control and Control Integration. This paper describes the Technology Readiness Level assessment of the Carbon Dioxide Reduction Assembly (CRA) for use on the International Space Station. A team comprising of the NASA Johnson Space Center, Marshall Space Flight Center, Southwest Research Institute and Hamilton Sundstrand Space Systems International have been working on various aspects of the CRA to bring its TRL from 4/5 up to 6. This paper describes the work currently being done in the three major categories. Specific details are given on technology development of the Core Technology Components including the reactor, phase separator and CO2 compressor.
Technical Paper

Catalytic Converter Design from Mat Material Coupon Fragility Data

Automotive catalytic converters must provide a very high level of mechanical and thermal durability to maintain performance during their 100,000 to 150,000 mile life expectancy. The work reported herein characterizes the converter as a base (can) excited spring (mat material) supported mass (substrate). A mat material coupon test apparatus was developed for the purpose of providing parameter data for the converter model in the form of stiffness and material loss factor data as a function of shear deflection across the mat. An intumescent mat material was chosen and its dynamic properties evaluated for a range of converter operating parameters. The mat material response properties were placed into a mat material database as a function of gap bulk density, substrate temperature, and temperature gradient across the mat.
Technical Paper

LPG Refueling Technology

A study was performed by Southwest Research Institute™ for the Propane Education and Research Council, under the cooperation and management of the Texas Railroad Commission to study and evaluate current LPG vehicle refueling technology. This study focused on connection systems, over-fill protection, and pumping/dispensing systems. Information was also compiled on the new standard for LPG refueling systems created and adopted by the European Committee for Standardization (CEN). The standard was created to reduce refueling emissions, increase operator safety, and improve the general operation and consumer acceptance level for LPG vehicles. This standard involves the LPG fill nozzle, nozzle receptacle, leakage rates, and pumping systems. This project was conducted in order to establish a firm starting point for the beginning of a standardization process for LPG vehicle refueling in the United States.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT™) - Part IV

This paper reports on the fourth part of a continued study on further research and development with the automated Ignition Quality Tester (IQT™). Research over the past six years (reported in SAE papers #961182, 971636 and 1999-01-3591) has demonstrated the capabilities of this automated apparatus to measure the ignition quality and accurately determine a derived cetane number (DCN) for a wide range of middle distillate and non-conventional diesel fuels. The present paper reports on a number of separate investigations supporting these continued studies.
Technical Paper

Real-Time Steady-State Oil Consumption Measurement on Commercial SI-Engine

The oil consumption has been measured in real-time for steady-state operating conditions for an approximately 2 L SI-engine. These oil consumption measurements have been obtained for the engine stack (total) as well as for the individual engine cylinders with the current generation of Southwest Research Institute (SwRI) developed SO2 analyzers. The 10 steady-state data presented in this paper is only a small fraction of the 234 steady-state data taken as part of this project. This paper is important since few complete data sets have been published in this area of research and since it illustrates the technical superiority of this analyzing tool for engine development purposes.
Technical Paper

Analysis of the Ignition Behaviour of the ASTM D-613 Primary Reference Fuels and Full Boiling Range Diesel Fuels in the Ignition Quality Tester (IQT™) - Part III

This paper reports on the third part of a continued study (SAE Papers 961182, 971636) to develop the Ignition Quality Tester (IQT™). Past research has shown that this automated laboratory/refinery apparatus can be used to accurately predict the cetane number of middle distillates and alternative fuels using small sample volumes (< 50 mL). The paper reports on the main objective of a study performed by Advanced Engine Technology Ltd. (AET), in co-operation with its research partners. The primary research objective of this work is to further the understanding of fuel preparation (fuel air mixing) and start of combustion processes in the IQT™. Key to this understanding is the manner in which single molecule compounds and full boiling-range diesel fuels behave during these processes. Insights are provided into the manner in which the American Society for Testing and Materials (ASTM) D-613 primary reference fuels (PRFs) undergo fuel preparation and start of combustion in the IQT™.
Technical Paper

The Port Fuel Injector Deposit Test - A Statistical Review

The Port Fuel Injector (PFI) Deposit Test is a performance-based test procedure developed by the Coordinating Research Council and adopted by state and federal regulatory agencies for fuel qualification in the United States. To date, Southwest Research Institute (SwRI) has performed over 375 PFI tests between 1991 and 1998 for various clients. This paper details the analyses of these tests. Of the 375 tests, 199 were performed as keep-clean tests and 176 were performed as clean-up tests. The following areas of interest are discussed in this paper: Keep-clean versus clean-up test procedures Linearity of deposit formation Injector position effects as related to fouling Dirtyup / cleanup phenomena Seasonal effects This paper draws the conclusion that it is easier to keep new injectors from forming deposits than it is to clean up previously formed deposits. It was found that injector deposit formation is generally non-linear.