Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Semi-Volatile Organic Compounds From a Combined Dual Port Injection/Direct-Injection Technology Light-Duty Gasoline Vehicle

2019-09-09
2019-24-0051
Gasoline direct injection (GDI) has changed the exhaust composition in comparison with the older port fuel injection (PFI) systems. More recently, light-duty vehicle engine manufactures have combined these two technologies to take advantage of the knock benefits and fuel economy of GDI with the low particulate emission of PFI. These dual injection strategy engines have made a significant change in the combustion emission composition produced by these engines. Understanding the impact of these changes is essential for automotive companies and aftertreatment developers. A novel sampling system was designed to sample the entire exhaust generated by a dual injection strategy gasoline vehicle using the United States Federal Test Procedure (FTP). This sampling system was capable of measuring the regulated emissions as well as collecting the entire exhaust from the vehicle for unregulated emissions.
Technical Paper

Particle Emissions from Gasoline Direct Injection Engines during Engine Start-Up (Cranking)

2019-04-02
2019-01-1182
Engine start-up (cranking) can be an important source of particle emissions from vehicles. With the penetration of GDI vehicles in the global vehicle fleet, it is important to analyze and understand the contribution of start-up particle emissions from GDI vehicles, and the potential effects of fuel properties on that process. In this work, chassis dynamometer based investigation on the effect of several gasoline fuels (commercial and blended) on both, naturally aspirated and turbocharged GDI vehicles were conducted to understand the importance of engine start up, in particular, cranking. 10 commercially available gasoline fuels were tested on a naturally aspirated 2010 model year GDI vehicle, 3 among these commercially available fuels were tested on another 2009 model year turbocharged GDI vehicle, and 8 blended gasoline fuels were tested on 12 other GDI vehicles (7 turbocharged and 5 naturally aspirated) ranging in model years 2011-2015.
Technical Paper

Evaluation of Gasoline Additive Packages to Assess Their Ability to Clean Up Intake Valve Deposits in Automotive Engines

2019-04-02
2019-01-0261
The majority of passenger car and light-duty trucks, especially in North America, operate using port-fuel injection (PFI) engines. In PFI engines, the fuel is injected onto the intake valves and then pulled into the combustion chamber during the intake stroke. Components of the fuel are unstable in this environment and form deposits on the upstream face of the intake valve. These deposits have been found to affect a vehicle’s drivability, emissions and engine performance. Therefore, it is critical for the gasoline to be blended with additives containing detergents capable of removing the harmful intake valve deposits (IVDs). Established standards are available to measure the propensity of IVD formation, for example the ASTM D6201 engine test and ASTM D5500 vehicle test.
Technical Paper

Development of a Natural Gas Engine with Diesel Engine-like Efficiency Using Computational Fluid Dynamics

2019-04-02
2019-01-0225
Present day natural gas engines have a significant efficiency disadvantage but benefit with low carbon-dioxide emissions and cheap three-way catalysis aftertreatment. The aim of this work is to improve the efficiency of a natural gas engine on par with a diesel engine. A Cummins-Westport ISX12-G (diesel) engine is used for the study. A baseline model is validated in three-dimensional Computational Fluid Dynamics (CFD). The challenge of this project is adapting the diesel engine for the natural gas fuel, so that the increased squish area of the diesel engine piston can be used to accomplish faster natural gas burn rates. A further increase efficiency is achieved by switching to D-EGR technology. D-EGR is a concept where one or more cylinders are run with excess fueling and its exhaust stream, containing H2 and CO, is cooled and fed into the intake stream. With D-EGR although there is an in-cylinder presence of a reactive H2-CO reformate, there is also higher levels of dilution.
Technical Paper

Combined Benefits of Variable Valve Actuation and Low-Pressure EGR on SI Engine Efficiency Part 2: High Load

2019-04-02
2019-01-0237
The abnormal autoignition of the unburned gas, namely knock, at high loads is a major challenge for modern spark ignited engines. Knock prevents the application of high compression ratios due to the increased unburned gas temperature, and it becomes increasingly severe for downsized engines with high specific powers. The current paper reports on the potential of utilizing continuously variable valve actuation (VVA) and low-pressure exhaust gas recirculation (EGR) to reduce knock tendency at high loads. Five speed / load points were investigated on a 1.6 L turbocharged gasoline direct injection engine. The brake specific fuel consumption (BSFC) response to the valve phasing and the intake valve lift was investigated with the design of experiment (DoE) approach. The DoE was conducted using a Box-Behnken surface response model. The results exhibited insensitive response of BSFC to intake valve lift and overlap.
Technical Paper

Effects of Dual Port Injection and Direct-Injection Technology on Combustion Emissions from Light-Duty Gasoline Vehicles

2019-04-02
2019-01-0999
Dual injection fuel systems combine the knock and fuel economy benefits of gasoline direct injection (GDI) technology with the lower particulate emissions of port fuel injection (PFI) systems. For many years, this technology was limited to smaller-volume, high-end, vehicle models, but these technologies are now becoming main stream. The combination of two fuel injection systems has an impact on the combustion emission composition as well as the consistency of control strategy and emissions. Understanding the impact of these changes is essential for fuel and fuel additive companies, automotive companies, and aftertreatment developers. This paper describes the effects of dual injection technology on both regulated and non-regulated combustion emissions from a 2018 Toyota Camry during several cold-start, 4-bag United States Federal Test Procedure (FTP) cycle.
Technical Paper

Evaluation of Diesel Spray with Non-Circular Nozzle - Part I: Inert Spray

2019-01-15
2019-01-0065
Numerous studies have characterized the impact of high injection pressure and small nozzle holes on spray quality and the subsequent impact on combustion. Higher injection pressure or smaller nozzle diameter usually reduce soot emissions owing to better atomization quality and fuel-air mixing enhancement. The influence of nozzle geometry on spray and combustion of diesel continues to be a topic of great research interest. An alternate approach impacting spray quality is investigated in this paper, specifically the impact of non-circular nozzles. The concept was explored experimentally in an optically accessible constant-volume combustion chamber (CVCC). Non-reacting spray evaluations were conducted at various ambient densities (14.8, 22.8, 30 kg/m3) under inert gas of Nitrogen (N2) while injection pressure was kept at 100 MPa. Shadowgraph imaging was used to obtain macroscopic spray characteristics such as spray structure, spray penetration, and the spray cone angle.
Technical Paper

Polycyclic Aromatic Hydrocarbons in Diesel Engine Exhaust Both with and without Aftertreatment

2018-09-10
2018-01-1812
Since the conception of the internal combustion engine, smoky and ill-smelling exhaust was prevalent. Over the last century, significant improvements have been made in improving combustion and in treating the exhaust to reduce these effects. One group of compounds typically found in exhaust, polycyclic aromatic hydrocarbons (PAH), usually occurs at very low concentrations in diesel engine exhaust. Some of these compounds are considered carcinogenic, and most are considered hazardous air pollutants (HAP). Many methods have been developed for sampling, handling, and analyzing PAH. For this study, an improved method for dilute exhaust sampling was selected for sampling the PAH in diesel engine exhaust. This sampling method was used during transient engine operation both with and without aftertreatment to show the effect of aftertreatment.
Technical Paper

Effect of Lubricant Oil on Particle Emissions from a Gasoline Direct Injection Light-Duty Vehicle

2018-09-10
2018-01-1708
Gasoline direction injection (GDI) engines have been widely used by light-duty vehicle manufacturers in recent years to meet stringent fuel economy and emissions standards. Particulate Matter (PM) mass emissions from current GDI engines are primarily composed of soot particles or black carbon with a small fraction (15% to 20%) of semi-volatile hydrocarbons generated from unburned/partially burned fuel and lubricating oil. Between 2017 and 2025, PM mass emissions regulations in the USA are expected to become progressively more stringent going down from current level of 6 mg/mile to 1 mg/mile in 2025. As PM emissions are reduced through soot reduction, lubricating oil derived semi-volatile PM is expected to become a bigger fraction of total PM mass emissions.
Technical Paper

Impact of Engine Age and Engine Hardware on Low-Speed Pre-Ignition

2018-09-10
2018-01-1663
Low-speed pre-ignition (LSPI) is a well-studied phenomenon in boosted, spark ignition engines. The impact of lubricant formulation has received a lot of attention in recent years, yet the impact of engine hardware and engine wear on LSPI is still not fully understood. This paper addresses some of these questions using results from multiple installations of the GM 2.0 L LHU engine platform. In the first part of the study, the effect of engine life on LSPI activity was observed, and it was found that engines were susceptible to variations in LSPI activity during the initial LSPI tests with the activity eventually reaching a “stabilized” level. It was further observed that the LSPI activity generally continued to decline at a steady rate as the engine aged. For engines used in LSPI testing, the life of the engine is often limited as LSPI activity decays with age.
Technical Paper

Comparison of Accelerated Ash Loading Methods for Gasoline Particulate Filters

2018-09-10
2018-01-1703
Recent legislation enacted for the European Union (EU) and the United States calls for a substantial reduction in particulate mass (and number in the EU) emissions from gasoline spark-ignited vehicles. The most prominent technology being evaluated to reduce particulate emissions from a gasoline vehicle is a wall flow filter known as a gasoline particulate filter (GPF). Similar in nature to a diesel particulate filter (DPF), the GPF will trap and store particulate emissions from the engine, and oxidize said particulate with frequent regeneration events. The GPF will also collect ash particles in the wall flow substrate, which are metallic components that cannot be oxidized into gaseous components. Due to high temperature operation and frequent regeneration of the GPF, the impact of ash on the GPF has the potential to be substantially different from the impact of ash on the DPF.
Technical Paper

Optimization of Heavy Duty Diesel Engine Lubricant and Coolant Pumps for Parasitic Loss Reduction

2018-04-03
2018-01-0980
As fuel economy becomes increasingly important in all markets, complete engine system optimization is required to meet future standards. In many applications, it is difficult to realize the optimum coolant or lubricant pump without first evaluating different sets of engine hardware and iterating on the flow and pressure requirements. For this study, a Heavy Duty Diesel (HDD) engine was run in a dynamometer test cell with full variability of the production coolant and lubricant pumps. Two test stands were developed to allow the engine coolant and lubricant pumps to be fully mapped during engine operation. The pumps were removed from the engine and powered by electric motors with inline torque meters. Each fluid circuit was instrumented with volume flow meters and pressure measurements at multiple locations. After development of the pump stands, research efforts were focused on hardware changes to reduce coolant and lubricant flow requirements of the HDD engine.
Technical Paper

Relationship among Various Particle Characterization Metrics Using GDI Engine Based Light-Duty Vehicles

2018-04-03
2018-01-0353
In recent years, gasoline direct injection (GDI) engines have been widely used by manufacturers in light-duty to meet stringent fuel economy and emissions standards. This study focuses on the relationship between various particle metrics such as number, size, surface area and mass of dilute exhaust particles from 12 different light-duty vehicles equipped with GDI engines. The campaign included the measurement of total particulate matter (PM) using Title 40 CFR Part 1066 compliant filter measurement, soot mass using photo-acoustics based analyzer, organic carbon (OC) & elemental carbon (EC) mass using thermo-optical analysis of quartz filter samples, solid particle number using European Union Regulation No. 49 compliant number system and solid particle size/number using an electrical mobility based size spectrometer.
Technical Paper

Solid Particle Number and Ash Emissions from Heavy-Duty Natural Gas and Diesel w/SCRF Engines

2018-04-03
2018-01-0362
Solid and metallic ash particle number (PN) and particulate matter (PM) mass emission measurements were performed on a heavy-duty (HD) on-highway diesel engine and a compressed natural gas (CNG) engine. Measurements were conducted under transient engine operation that included the FTP, WHTC and RMC. Both engines were calibrated to meet CARB ultra low NOX emission target of 0.02 g/hp-hr, a 90% reduction from current emissions limit. The HD diesel engine final exhaust configuration included a number of aftertreatement sub-systems in addition to a selective catalytic reduction filter (SCRF). The stoichiometric CNG engine final configuration included a closed coupled Three Way Catalyst (ccTWC) and an under floor TWC (ufTWC). The aftertreatment systems for both engines were aged for a full useful life (FUL) of 435,000 miles, prior to emissions testing. PM mass emissions from both engines were comparable and well below the US EPA emissions standard.
Technical Paper

Effect of Micro-Hole Nozzle on Diesel Spray and Combustion

2018-04-03
2018-01-0301
The influence of nozzle geometry on spray and combustion of diesel continues to be a topic of great research interest. One area of promise, injector nozzles with micro-holes (i.e. down to 30 μm), still need further investigation. Reduction of nozzle orifice diameter and increased fuel injection pressure typically promotes air entrainment near-nozzle during start of injection. This leads to better premixing and consequently leaner combustion, hence lowering the formation of soot. Advances in numerical simulation have made it possible to study the effect of different nozzle diameters on the spray and combustion in great detail. In this study, a baseline model was developed for investigating the spray and combustion of diesel fuel at the Spray A condition (nozzle diameter of 90 μm) from the Engine Combustion Network (ECN) community.
Technical Paper

Cold Start HD FTP Test Results on Multi-Cylinder Opposed-Piston Engine Demonstrating Rapid Exhaust Enthalpy Rise to Achieve Ultra Low NOx

2018-04-03
2018-01-1378
The 2010 emission standards for heavy-duty diesel engines in the U.S. have established a limit for oxides of nitrogen (NOx) emissions of 0.20 g/bhp-hr., a 90% reduction from the previous emission standards. However, it has been projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with the 2010 emission standards, the upcoming National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and ozone will not be achieved in California without further significant reductions in NOx emissions from the heavy-duty vehicle fleet. Given this, there is potential of further reduction in NOx emissions limit standards for heavy duty engines in the US. Recently there have been extensive studies and publications focusing on ultra-low NOx after treatment technologies that help achieve up to 0.02g/bhp-hr. at tailpipe [1].
Technical Paper

Efficiency and Emissions Characteristics of Partially Premixed Dual-Fuel Combustion by Co-Direct Injection of NG and Diesel Fuel (DI2) - Part 2

2017-03-28
2017-01-0766
The CO2 advantage coupled with the low NOX and PM potential of natural gas (NG) makes it well-suited for meeting future greenhouse gas (GHG) and NOX regulations for on-road medium and heavy-duty engines. However, because NG is mostly methane, reduced combustion efficiency associated with traditional NG fueling strategies can result in significant levels of methane emissions which offset the CO2 advantage due to reduced efficiency and the high global warming potential of methane. To address this issue, the unique co-direct injection capability of the Westport HPDI fuel system was leveraged to obtain a partially-premixed fuel charge by injecting NG during the compression stroke followed by diesel injection for ignition timing control. This combustion strategy, referred to as DI2, was found to improve thermal and combustion efficiencies over fumigated dual-fuel combustion modes.
Technical Paper

The Impact of Engine Operating Conditions on Reformate Production in a D-EGR Engine

2017-03-28
2017-01-0684
Dedicated EGR has shown promise for achieving high efficiency with low emissions [1]. For the present study, a 4-cylinder turbocharged GDI engine which was modified to a D-EGR configuration was used to investigate the impact of valve phasing and different injection strategies on the reformate production in the dedicated cylinder. Various levels of positive valve overlap were used in conjunction with different approaches for dedicated cylinder over fueling using PFI and DI fuel systems. Three speed-load combinations were studied, 2000 rpm 4 bar IMEPg, 2000 rpm 12 bar IMEPg, and 4000 rpm 12 bar IMEPg. The primary investigation was conducted to map out the dedicated cylinders' performance at the operating limits of intake and exhaust cam phasing. In this case, the limits were defined as conditions that yielded either no reformate benefit or led to instability in the dedicated cylinder.
Technical Paper

Achieving 0.02 g/bhp-hr NOx Emissions from a Heavy-Duty Stoichiometric Natural Gas Engine Equipped with Three-Way Catalyst

2017-03-28
2017-01-0957
It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine - Comparison of Advanced Technology Approaches

2017-03-28
2017-01-0956
The 2010 emissions standards for heavy-duty engines have established a limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, the California Air Resource Board (ARB) projects that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter (PM) and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
X