Refine Your Search

Topic

Search Results

Technical Paper

Benefits of a Dual HP and LP EGR Circuit on a Turbocharged Direct Injection Gasoline Engine

2022-03-29
2022-01-0429
Internal combustion engines (ICE) will be a part of personal transportation for the foreseeable future. One recent trend for engines has been downsizing which enables the engine to be run more efficiently over regulatory drive cycles. Due to downsizing, engine power density has increased which leads to problems with engine knock. Therefore, there is an increasing need to find a means to reduce the knock propensity of downsized engines. One of the ways of reducing knock propensity is by introducing Exhaust Gas Recirculation (EGR) into the combustion chamber, however, volumetric efficiency also reduces with EGR which places challenges on the boosting system. The individual benefits of high-pressure (HP-EGR) and low-pressure (LP-EGR) loop EGR system to assist the boosting system of a 2.0 L Gasoline Direct Injection (GDI) production engine are explored in this paper.
Technical Paper

A Comparison of EGR Condensate Composition between EGR and Dedicated-EGR Combustion Strategies

2021-04-06
2021-01-0484
Water injection is an effective method for knock control in spark-ignition engines. However, the requirement of a separate water source and the cost and complexity associated with a fully integrated system creates a limitation of this method to be used in volume production engines. The engine exhaust typically contains 10-15% water vapor by volume which could be condensed and potentially stored for future use. In this study, the exhaust condensate composition was assessed for its use as an effective replacement for distilled water. Specifically, condensate samples were collected pre and post-three-way catalyst (TWC) and analyzed for acidity and composition. The composition of the pre and post-TWC condensates was found to be similar however, the pre-TWC condensate was mildly acidic. The mild acidity has the potential to corrode certain components in the intake air circuit.
Technical Paper

Combustion Stabilization for Enriched D-EGR Applications via Air-Assisted Pre-Chambers

2021-04-06
2021-01-0481
The dedicated exhaust gas recirculation (D-EGR®) concept developed by Southwest Research Institute (SwRI) has demonstrated a thermal efficiency increase on several spark-ignited engines at both low and high-load conditions. Syngas (H2+CO) is produced by the dedicated cylinder (D-cyl) which operates at a rich air-fuel ratio. The syngas helps to stabilize combustion under highly dilute conditions at low loads as well as mitigating knock at high loads. The D-cyl produces all the EGR for the engine at a fixed rate of approximately 25% EGR for a four-cylinder engine and 33% EGR for a six-cylinder engine. The D-cyl typically runs up to an equivalence ratio of 1.4 for gasoline-fueled engines, beyond which the combustion becomes unstable due to the decreasing laminar burning velocity caused by rich conditions. Conventional active-fueled and passive pre-chambers have benefits of inducing multi-site ignition and enhancing turbulence in the main chamber.
Technical Paper

Particle Number Emissions Evaluation for Conventional SI, Low-Pressure Loop EGR, and D-EGR Combustion Strategies

2021-04-06
2021-01-0485
The size and distribution of a vehicle’s tailpipe particulate emissions can have a strong impact on human health, especially if the particles are small enough to enter the human respiratory system. Gasoline direct injection (GDI) has been adopted widely to meet stringent fuel economy and CO2 regulations across the globe for recent engine architectures. However, the introduction of GDI has led to challenges concerning the particulate matter (PM) and particle number (PN) emissions from such engines. This study aimed to compare the particulate emissions of three SI combustion strategies: conventional SI, conventional stoichiometric low-pressure exhaust gas recirculation (LP-EGR), and Dedicated-EGR (D-EGR) at four specific test conditions. It was shown that the engine-out PM/PN for both the EGR strategies was lower than the conventional SI combustion under normal operating conditions. The test conditions were chosen to represent the WLTC test conditions.
Journal Article

The Effects of EGR Composition on Combustion Performance and Efficiency

2020-09-15
2020-01-2052
Because of the thermodynamic relationship of pressure, temperature and volume for processes which occur in an internal-combustion engine (ICE), and their relationship to ideal efficiency and efficiency-limiting phenomena e.g. knock in spark-ignition engines, changing the thermo-chemical properties of the in-cylinder charge should be considered as an increment in the development of the ICE engine for future efficiency improvements. Exhaust gas recirculation (EGR) in spark-ignited gasoline engines is one increment that has been made to alter the in-cylinder charge. EGR gives proven thermal efficiency benefits for SI engines which improve vehicle fuel economy, as demonstrated through literature and production applications. The thermal efficiency benefit of EGR is due to lower in-cylinder temperatures, reduced heat transfer and reduced pumping losses. The next major increment could be modifying the constituents of the EGR stream, potentially through the means of a membrane.
Journal Article

Extend Syngas Yield through Increasing Rich Limit by Stratified Air Injection in a Single Cylinder Engine

2020-04-14
2020-01-0958
Dedicated exhaust gas recirculation (D-EGR®) concept developed by Southwest Research Institute (SwRI) has demonstrated a thermal efficiency increase on many spark-ignited engines at both low and high load conditions. The syngas (H2+CO) produced in the dedicated cylinder (D-cyl) by rich combustion helps to stabilize combustion at highly dilute conditions at low loads and mitigate knock at high loads. The dedicated cylinder with 25% EGR can typically run up to equivalence ratio of 1.4, beyond which the combustion becomes unstable. By injecting fresh air near the spark plug gap at globally rich conditions, a locally lean or near-stoichiometric mixture can be achieved, thus facilitating the ignitability of the mixture and increasing combustion stability. With more stable combustion a richer global mixture can be introduced into the D-cyl to generate higher concentrations of syngas. This in turn can further improve the engine thermal efficiency.
Technical Paper

A Gas Separation Membrane Highly Selective to CO2 in the Exhaust of Internal Combustion Engines

2019-12-19
2019-01-2265
Southwest Research Institute has developed a passive, flow-through, membrane which separates carbon dioxide (CO2) from other exhaust gas species. Stoichiometric exhaust gas for 0% ethanol fuels contain approximately 14% CO2 by concentration. The membrane consists of a ceramic substrate impregnated with lithium zirconate (Li2ZrO3). In the presence of temperatures of 400-600 °C the CO2 reacts with lithium zirconate to form lithium carbonate (Li2CO3). The new compound moves from the inner surface of the membrane via partial pressure gradient to the outer wall of the membrane and desorbs into a low concentration CO2 environment, e.g. atmospheric air with 400 ppm CO2. SwRI has tested the membrane under engine-like conditions, comparable to 2000 rpm 10 bar BMEP operation, on a standalone burner rig (ECTO-lab burner). On the SwRI ECTO-lab burner rig temperature, flow-rate and exhaust gas products can be independently varied.
Journal Article

Methanol Fuel Testing on Port Fuel Injected Internal-Only EGR, HPL-EGR and D-EGR® Engine Configurations

2017-10-08
2017-01-2285
The primary focus of this investigation was to determine the hydrogen reformation, efficiency and knock mitigation benefits of methanol-fueled Dedicated EGR (D-EGR®) operation, when compared to other EGR types. A 2.0 L turbocharged port fuel injected engine was operated with internal EGR, high-pressure loop (HPL) EGR and D-EGR configurations. The internal, HPL-EGR, and D-EGR configurations were operated on neat methanol to demonstrate the relative benefit of D-EGR over other EGR types. The D-EGR configuration was also tested on high octane gasoline to highlight the differences to methanol. An additional sub-task of the work was to investigate the combustion response of these configurations. Methanol did not increase its H2 yield for a given D-EGR cylinder equivalence ratio, even though the H:C ratio of methanol is over twice typical gasoline.
Journal Article

Dedicated EGR Vehicle Demonstration

2017-03-28
2017-01-0648
Dedicated EGR (D-EGR) is an EGR strategy that uses in-cylinder reformation to improve fuel economy and reduce emissions. The entire exhaust of a sub-group of power cylinders (dedicated cylinders) is routed directly into the intake. These cylinders are run fuel-rich, producing H2 and CO (reformate), with the potential to improve combustion stability, knock tolerance and burn duration. A 2.0 L turbocharged D-EGR engine was packaged into a 2012 Buick Regal and evaluated on drive cycle performance. City and highway fuel consumption were reduced by 13% and 9%, respectively. NOx + NMOG were 31 mg/mile, well below the Tier 2 Bin 5 limit and just outside the Tier 3 Bin 30 limit (30 mg/mile).
Journal Article

Design and Implementation of a D-EGR® Mixer for Improved Dilution and Reformate Distribution

2017-03-28
2017-01-0647
The Dedicated EGR (D-EGR®) engine has shown improved efficiency and emissions while minimizing the challenges of traditional cooled EGR. The concept combines the benefits of cooled EGR with additional improvements resulting from in-cylinder fuel reformation. The fuel reformation takes place in the dedicated cylinder, which is also responsible for producing the diluents for the engine (EGR). The D-EGR system does present its own set of challenges. Because only one out of four cylinders is providing all of the dilution and reformate for the engine, there are three “missing” EGR pulses and problems with EGR distribution to all 4 cylinders exist. In testing, distribution problems were realized which led to poor engine operation. To address these spatial and temporal mixing challenges, a distribution mixer was developed and tested which improved cylinder-to-cylinder and cycle-to-cycle variation of EGR rate through improved EGR distribution.
Technical Paper

Impact of the Direct Injection of Liquid Propane on the Efficiency of a Light-Duty, Spark-Ignited Engine

2017-03-28
2017-01-0865
Liquefied petroleum gas (LPG) is commonly known as autogas when used as a fuel for internal combustion engines. In North America, autogas primarily consists of propane, but can contain small amounts of butane, methane and propylene. Autogas is not a new fuel for internal combustion engines, but as engine technology evolves, the properties of autogas can be utilized to improve engine and vehicle efficiency. With support from the Propane Education & Research Council (PERC), Southwest Research Institute (SwRI) performed testing to quantify efficiency differences with liquid autogas direct injection in a modern downsized and boosted direct-injected engine using the production gasoline fuel injection hardware. Engine dynamometer testing demonstrated that autogas produced similar performance characteristics to gasoline at part load, but could be used to improve brake thermal efficiency at loads above 9 bar Brake Mean Effective Pressure (BMEP).
Journal Article

A Study Isolating the Effect of Bore-to-Stroke Ratio on Gasoline Engine Combustion Chamber Development

2016-10-17
2016-01-2177
A unique single cylinder engine was used to assess engine performance and combustion characteristics at three different strokes, with all other variables held constant. The engine utilized a production four-valve, pentroof cylinder head with an 86mm bore. The stock piston was used, and a variable deck height design allowed three crankshafts with strokes of 86, 98, and 115mm to be tested. The compression ratio was also held constant. The engine was run with a controlled boost-to-backpressure ratio to simulate turbocharged operation, and the valve events were optimized for each operating condition using intake and exhaust cam phasers. EGR rates were swept from zero to twenty percent under low and high speed conditions, at MBT and maximum retard ignition timings. The increased stroke engines demonstrated efficiency gains under all operating conditions, as well as measurably reduced 10-to-90 percent burn durations.
Journal Article

The Interaction between Fuel Anti-Knock Index and Reformation Ratio in an Engine Equipped with Dedicated EGR

2016-04-05
2016-01-0712
Experiments were performed on a small displacement (< 2 L), high compression ratio, 4 cylinder, port injected gasoline engine equipped with Dedicated EGR® (D-EGR®) technology using fuels with varying anti-knock properties. Gasolines with anti-knock indices of 84, 89 and 93 anti-knock index (AKI) were tested. The engine was operated at a constant nominal EGR rate of ∼25% while varying the reformation ratio in the dedicated cylinder from a ϕD-EGR = 1.0 - 1.4. Testing was conducted at selected engine speeds and constant torque while operating at knock limited spark advance on the three fuels. The change in combustion phasing as a function of the level of overfuelling in the dedicated cylinder was documented for all three fuels to determine the tradeoff between the reformation ratio required to achieve a certain knock resistance and the fuel octane rating.
Technical Paper

Demonstration of a Novel, Off Road, Diesel Combustion Concept

2016-04-05
2016-01-0728
There are numerous off-road diesel engine applications. In some applications there is more focus on metrics such as initial cost, packaging and transient response and less emphasis on fuel economy. In this paper a combustion concept is presented that may be well suited to these applications. The novel combustion concept operates in two distinct operation modes: lean operation at light engine loads and stoichiometric operation at intermediate and high engine loads. One advantage to the two mode approach is the ability to simplify the aftertreatment and reduce cost. The simplified aftertreatment system utilizes a non-catalyzed diesel particulate filter (DPF) and a relatively small lean NOx trap (LNT). Under stoichiometric operation the LNT has the ability to act as a three way catalyst (TWC) for excellent control of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx).
Technical Paper

Parametric Study and Secondary Circuit Model Calibration Using Spark Calorimeter Testing

2015-04-14
2015-01-0778
The presented work describes how spark calorimeter testing was used for parametric study and secondary circuit model calibration. Tests were conducted at different pressures, sparkplug gaps and supplied primary energies. The conversion efficiency increases and the spark duration decreases when the gas pressure or the sparkplug gap size is increased. Both gas pressure and sparkplug gas size increase the positive column voltage which represents part of the electrical energy delivered to the gas. The opposite direction occurs when the supplied primary energy is increased. The testing results were then used to calibrate the secondary circuit model which consisted of the sparkplug, the sparkplug gap and the secondary wiring. A step-by-step method was used to calibrate the three constants of the model to match the calculated delivered energy with test data during arc / glow phase.
Journal Article

A Demonstration of Dedicated EGR on a 2.0 L GDI Engine

2014-04-01
2014-01-1190
Southwest Research Institute (SwRI) converted a 2012 Buick Regal GS to use an engine with Dedicated EGR™ (D-EGR™). D-EGR is an engine concept that uses fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency [1]. To accomplish reformation of the gasoline in a cost-effective, energy efficient manner, a dedicated cylinder is used for both the production of EGR and reformate. By operating the engine in this manner, many of the sources of losses from traditional reforming technology are eliminated and the engine can take full advantage of the benefits of reformate. The engine in the vehicle was modified to add the following components: the dedicated EGR loop, an additional injector for delivering extra fuel for reformation, a modified boost system that included a supercharger, high energy dual coil offset (DCO) ignition and other actuators used to enable the control of D-EGR combustion.
Technical Paper

A High-Energy Continuous Discharge Ignition System for Dilute Engine Applications

2013-04-08
2013-01-1628
SwRI has developed the DCO® ignition system, a unique continuous discharge system that allows for variable duration/energy events in SI engines. The system uses two coils connected by a diode and a multi-striking controller to generate a continuous current flow through the spark plug of variable duration. A previous publication demonstrated the ability of the DCO system to improve EGR tolerance using low energy coils. In this publication, the work is extended to high current (≻ 300 mA/high energy (≻ 200 mJ) coils and compared to several advanced ignition systems. The results from a 4-cylinder, MPI application demonstrate that the higher current/higher energy coils offer an improvement over the lower energy coils. The engine was tested at a variety of speed and load conditions operating at stoichiometric air-fuel ratios with gasoline and EGR dilution.
Technical Paper

Air-Assisted Direct Injection Diesel Investigations

2013-04-08
2013-01-0907
Enhancement of fuel/air mixing is one path towards enabling future diesel engines to increase efficiency and control emissions. Air-assist fuel injections have shown potential for low pressure applications and the current work aims to extend air-assist feasibility understanding to high pressure environments. Analyses were completed and carried out for traditional high pressure fuel-only, internal air-assist, and external air-assist fuel/air mixing processes. A combination of analytical 0-D theory and 3D CFD were used to help understand the processes and guide the design of the air-assisted setup. The internal air-assisted setup was determined to have excellent liquid fuel vaporization, but poorer fuel dispersion than the traditional high-pressure fuel injections.
Technical Paper

3D-Semi 1D Coupling for a Complete Simulation of an SCR System

2013-04-08
2013-01-1575
The presented work describes how numerical modeling techniques were extended to simulate a full Selective Catalytic Reduction (SCR) NOx aftertreatement system. Besides predicting ammonia-to-NOX ratio (ANR) and uniformity index (UI) at the SCR inlet, the developed numerical model was able to predict NOx reduction and ammonia slip. To reduce the calculation time due to the complexity of the chemical process and flow field within the SCR, a semi-1D approach was developed and applied to model the SCR catalyst, which was subsequently coupled with a 3D model of the rest of the exhaust system. Droplet depletion of urea water solution (UWS) was modeled by vaporization and thermolysis techniques while ammonia generation was modeled by the thermolysis and hydrolysis method. Test data of two different SCR systems were used to calibrate the simulation results. Results obtained using the thermolysis method showed better agreement with test data compared to the vaporization method.
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
X